Distribution of Characteristic Times: A High-Resolution Spectrum Approach for Visualizing Chemical Relaxation and Resolving Kinetic Parameters of Ionic-Electronic Conducting Ceramic Oxides
Abstract
:1. Introduction
2. The Theory of the Distribution of Characteristic Times
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, C.; Li, Y.; Zhang, W.; Zheng, Y.; Lou, X.; Yu, B.; Chen, J.; Chen, Y.; Liu, M.; Wang, J. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ. Sci. 2020, 13, 53–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Knibbe, R.; Sunarso, J.; Zhong, Y.; Zhou, W.; Shao, Z.; Zhu, Z. recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv. Mater. 2017, 29, 1700132. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, L. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427–1463. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Guan, Z.; Zhang, D.; Trotochaud, L.; Crumlin, E.J.; Nemsak, S.; Bluhm, H.; Tuller, H.L.; Chueh, W.C. Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2−x. Nat. Catal. 2020, 3, 116–124. [Google Scholar] [CrossRef]
- Poetzsch, D.; Merkle, R.; Maier, J. Stoichiometry variation in materials with three mobile carriers-thermodynamics and transport kinetics exemplified for protons, oxygen vacancies, and holes. Adv. Funct. Mater. 2015, 25, 1542–1557. [Google Scholar] [CrossRef]
- Zhao, F.; Virkar, A. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J. Power Sources 2005, 141, 79–95. [Google Scholar] [CrossRef]
- Irvine, J.T.; Neagu, D.; Verbraeken, M.C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M.B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014. [Google Scholar] [CrossRef] [Green Version]
- Gregori, G.; Merkle, R.; Maier, J. Ion conduction and redistribution at grain boundaries in oxide systems. Prog. Mater. Sci. 2017, 89, 252–305. [Google Scholar] [CrossRef]
- Bucher, E.; Egger, A.; Ried, P.; Sitte, W.; Holtappels, P. Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ion. 2008, 179, 1032–1035. [Google Scholar] [CrossRef]
- Sunarso, J.; Baumann, S.; Serra, J.M.; Meulenberg, W.A.; Liu, S.; Lin, Y.S.; Da Costa, J.C.D. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008, 320, 13–41. [Google Scholar] [CrossRef]
- Ko, H.-D.; Lin, C.-C. Oxygen Diffusivities and Surface Exchange Coefficients in Porous Mullite/Zirconia Composites Measured by the Conductivity Relaxation Method. J. Am. Ceram. Soc. 2010, 93, 176–183. [Google Scholar] [CrossRef]
- Kilner, J. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ion. 1996, 86, 703–709. [Google Scholar] [CrossRef]
- Yasuda, I.; Hishinuma, M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J. Solid State Chem. 1996, 123, 382–390. [Google Scholar] [CrossRef]
- De Souza, R.A.; Kilner, J.A. Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange. Solid State Ion. 1999, 126, 153–161. [Google Scholar] [CrossRef]
- Lane, J. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ion. 2000, 136, 997–1001. [Google Scholar] [CrossRef]
- Ganeshananthan, R.; Virkar, A.V. Measurement of surface exchange coefficient on porous La0.6Sr0.4CoO3−δ samples by conductivity relaxation. J. Electrochem. Soc. 2005, 125, A1620–A1628. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhang, Y.; Xiao, G.; Chen, F.; Xia, C. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochem. Commun. 2011, 13, 711–713. [Google Scholar] [CrossRef]
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev. 2004, 104, 4791–4844. [Google Scholar] [CrossRef]
- Chen, Y.; Yoo, S.; Choi, Y.; Kim, J.H.; Ding, Y.; Pei, K.; Murphy, R.; Zhang, Y.; Zhao, B.; Zhang, W.; et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 2458–2466. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, Y.; Yoo, S.; Ding, Y.; Yan, R.; Pei, K.; Qu, C.; Zhang, L.; Chang, I.; Zhao, B.; et al. A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule 2018, 2, 938–949. [Google Scholar] [CrossRef]
- Chen, Y.; Bu, Y.; Zhang, Y.; Yan, R.; Ding, D.; Zhao, B.; Yoo, S.; Dang, D.; Hu, R.; Yang, C.; et al. A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 2016, 7, 1601890. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Kleis, J.; Rossmeisl, J.; Shao-Horn, Y.; Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 2011, 4, 3966–3970. [Google Scholar] [CrossRef]
- Hu, B.; Xia, C. Factors influencing the measured surface reaction kinetics parameters. Asia Pac. J. Chem. Eng. 2016, 11, 327–337. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Boukamp, B.; Otter, M.; Bouwmeester, H. Transport processes in mixed conducting oxides: Combining time domain experiments and frequency domain analysis. J. Solid State Electrochem. 2004, 8, 592–598. [Google Scholar] [CrossRef]
- Ciucci, F. Electrical conductivity relaxation measurements: Statistical investigations using sensitivity analysis, optimal experimental design and ECRTOOLS. Solid State Ion. 2013, 239, 28–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Chen, F. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy. J. Power Sources 2015, 277, 277–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yan, M.F.; Chen, F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477. [Google Scholar] [CrossRef]
- Xia, J.; Wang, C.; Wang, X.; Bi, L.; Zhang, Y. A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochim. Acta 2020, 349, 136328. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, F.; Hu, B.; Xia, C.; Yan, M. Chemical relaxation in porous ionic–electronic conducting materials represented by the distribution of characteristic times. J. Mater. Chem. A 2020, 8, 17442–17448. [Google Scholar] [CrossRef]
- Otter, M.W.D.; Bouwmeester, H.J.; Boukamp, B.A.; Verweij, H. Reactor flush time correction in relaxation experiments. J. Electrochem. Soc. 2001, 148, J1–J6. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Li, M.; Yan, M.F.; Ni, M.; Xia, C. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy. J. Power Sources 2016, 308, 1–6. [Google Scholar] [CrossRef]
- Yeh, T.C.; Routbort, J.L.; Mason, T.O. Oxygen transport and surface exchange properties of Sr0.5Sm0.5CoO3−δ. Solid State Ion. 2013, 232, 138–143. [Google Scholar] [CrossRef]
- Gopal, C.B.; Haile, S.M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria. J. Mater. Chem. A 2014, 2, 2405–2417. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, F.; Wang, Y.; Yang, Y.; Zhu, L.; Hu, H.; Tang, Z.; Zhang, Y.; Yan, M.; Xia, C.; Xu, Y. Distribution of Characteristic Times: A High-Resolution Spectrum Approach for Visualizing Chemical Relaxation and Resolving Kinetic Parameters of Ionic-Electronic Conducting Ceramic Oxides. Coatings 2020, 10, 1240. https://doi.org/10.3390/coatings10121240
Yan F, Wang Y, Yang Y, Zhu L, Hu H, Tang Z, Zhang Y, Yan M, Xia C, Xu Y. Distribution of Characteristic Times: A High-Resolution Spectrum Approach for Visualizing Chemical Relaxation and Resolving Kinetic Parameters of Ionic-Electronic Conducting Ceramic Oxides. Coatings. 2020; 10(12):1240. https://doi.org/10.3390/coatings10121240
Chicago/Turabian StyleYan, Fuyao, Yiheng Wang, Ying Yang, Lei Zhu, Hui Hu, Zhuofu Tang, Yanxiang Zhang, Mufu Yan, Changrong Xia, and Yueming Xu. 2020. "Distribution of Characteristic Times: A High-Resolution Spectrum Approach for Visualizing Chemical Relaxation and Resolving Kinetic Parameters of Ionic-Electronic Conducting Ceramic Oxides" Coatings 10, no. 12: 1240. https://doi.org/10.3390/coatings10121240
APA StyleYan, F., Wang, Y., Yang, Y., Zhu, L., Hu, H., Tang, Z., Zhang, Y., Yan, M., Xia, C., & Xu, Y. (2020). Distribution of Characteristic Times: A High-Resolution Spectrum Approach for Visualizing Chemical Relaxation and Resolving Kinetic Parameters of Ionic-Electronic Conducting Ceramic Oxides. Coatings, 10(12), 1240. https://doi.org/10.3390/coatings10121240