Anti-Corrosive Properties of an Effective Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) Coating on Copper in a 3.5% NaCl Solution
Abstract
:1. Introduction
2. Experimental
2.1. Copper Samples
2.2. Corrosive Medium
2.3. Synthesis of GG-AMPS
2.4. Infrared Spectroscopy
2.5. Weight Loss
2.6. Electrochemical Analysis
2.7. Scanning Electrochemical Microscopy (SECM)
2.8. Scanning Electron Microscopy (SEM)
2.9. Atomic Force Microscopy (AFM)
3. Results and Discussion
3.1. Weight Loss Experiment
3.1.1. Effect of Concentration, Time, and Temperature
3.1.2. Adsorption Isotherm of Inhibitor on Copper
3.2. Electrochemical Tests
3.2.1. Electrochemical Impedance Spectroscopy (EIS) Studies
3.2.2. Potentiodynamic Polarization Tests
3.3. Scanning Electrochemical Microscopy (SECM)
3.4. Scanning Electron Microscopy (SEM)
3.5. Atomic Force Microscope (AFM)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Ituen, E.; Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A. Surface protection of X80 steel by Epimedium extract and its iodide-modified composites in simulated acid wash solution: A greener approach for corrosion inhibition. New J. Chem. 2019, 43, 8527–8538. [Google Scholar] [CrossRef]
- Du, P.; Li, J.; Zhao, Y.; Dai, Y.; Yang, Z.; Tian, Y. Corrosion characteristics of Al alloy/galvanized-steel Couple in NaCl solution. Int. J. Electrochem. Sci. 2018, 13, 11164–11179. [Google Scholar] [CrossRef]
- Antonijevic, M.M.; Petrovic, M.B. Copper corrosion inhibitors. A review. Int. J. Electrochem. Sci. 2008, 3, 1–28. [Google Scholar]
- Ramachandran, S.; Jovancicevic, V. Molecular modeling of the inhibition of mild copper carbon dioxide corrosion by imidazolines. Corrosion 1999, 55, 259–267. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Pyridine derivatives as corrosion inhibitors for N80 in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement 2015, 76, 136–147. [Google Scholar] [CrossRef]
- Sastri, V.S. Green Corrosion Inhibitors. In Theory and Practice, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yang, Y.; Yin, C.; Singh, A.; Lin, Y. Electrochemical study of commercial and synthesized green corrosion inhibitors for N80 steel in acidic liquid. New J. Chem. 2019, 43, 16058–16070. [Google Scholar]
- Fonseca, T.; Gigante, B.; Gilchrist, T.L. A short synthesis of phenanthro [2,3-d] imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron 2001, 57, 1793–1799. [Google Scholar] [CrossRef]
- Jevremovic’, I.; Singer, M.; Nešic’, S.; Miškovic’-Stankovic’, V. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild copper corrosion in chloride solution saturated with carbon dioxide. Corros. Sci. 2013, 77, 265–272. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Quraishi, M.A.; Lgaz, H. Effect of electron donating functional groups on corrosion inhibition of J55 steel in sweet corrosive environment: Experimental, density functional theory and molecular dynamic simulation. Materials 2019, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Desimone, M.P.; Gordillo, G.; Simison, S.N. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amidoamine in CO2 saturated solution. Corros. Sci. 2011, 53, e4033–e4043. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rodriguez, J.G.; Zeferino-Rodriguez, T.; Ortega, D.M.; Serna, S.; Campillo, B.; Casales, M.; Valenzuela, E.; Juarez-Islas, J. Effect of microstructure on the CO2 corrosion inhibition by carboxy amidoimidazolines on a pipeline copper. Int. J. Electrochem. Sci. 2017, 2, 883–896. [Google Scholar]
- He, Y.; Yang, R.; Zhou, Y.; Ma, L.; Zhang, L.; Chen, Z. Water soluble Thiosemicarbazideimidazole derivative as an efficient inhibitor protecting P110 carbon copper from CO2 corrosion. Anti Corros. Methods Mater. 2016, 63, 437–444. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.; Yang, R.; Ma, L.; Chen, Z. Imidazoline derivative with four imidazole reaction centers as an efficient corrosion inhibitor for anti-CO2 corrosion. Russ. J. Appl. Chem. 2015, 88, 1192–1200. [Google Scholar] [CrossRef]
- Kandemirli, F.; Sagdinc, S. Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corros. Sci. 2007, 49, 2118–2130. [Google Scholar] [CrossRef]
- Biswas, A.; Das, D.; Lgaz, H.; Pal, S.; Nair, U.G. Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies. J. Mol. Liq. 2019, 275, 867–878. [Google Scholar] [CrossRef]
- Biswas, A.; Pal, S.; Udayabhanu, G. Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl. Appl. Surf. Sci. 2015, 30, 173–183. [Google Scholar] [CrossRef]
- Biswas, A.; Mourya, P.; Mondal, D.; Pal, S.; Udayabhanu, G. Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electrochemical study. J. Mol. Liq. 2018, 251, 867–878. [Google Scholar] [CrossRef]
- ASTM G31-72 Standard Practice for Laboratory Immersion Corrosion Testing of Metals; ASTM International: West Conshohocken, PA, USA, 2004.
- Singh, A.; Ansari, K.R.; Haque, J.; Dohare, P.; Lgaz, H.; Salghi, R.; Quraishi, M.A. Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: Experimental and quantum chemical study. J. Taiwan Inst. Chem. Eng. 2018, 82, 470–479. [Google Scholar] [CrossRef]
- Singh, A.; Soni, N.; Deyuan, Y.; Kumar, A. A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment. Results Phys. 2019, 13, 102116. [Google Scholar] [CrossRef]
- Xu, X.; Singh, A.; Sun, Z.; Ansari, K.R.; Lin, Y. Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. R. Soc. Open Sci. 2017, 4, 170933–170951. [Google Scholar] [CrossRef] [Green Version]
- Ansari, K.R.; Quraishi, M.A. Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for Copper in 15% hydrochloric acid. Physica E 2015, 69, 322–331. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A.; Ramkumar, S.; Obot, I.B. Corrosion inhibition of Copper in 15% HCl by pyrazolone derivatives: Electrochemical, surface and quantum chemical studies. RSC Adv. 2016, 6, 24130–24141. [Google Scholar] [CrossRef]
- Li, X.H.; Deng, S.D.; Fu, H.; Mu, G.N. Inhibition by tween-85 of the corrosion of cold rolled copper in 1.0 M hydrochloric acid solution. J. Appl. Electrochem. 2009, 39, 1125–1135. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Quraishi, M.A.; Lgaz, H.; Lin, Y. Synthesis and investigation of pyran derivatives as acidizing corrosion inhibitors for Copper in hydrochloric acid: Theoretical and experimental approaches. J. Alloys Compd. 2018, 762, 347–362. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild copper in hydrochloric acid solution. Corros. Sci. 2014, 79, 5–15. [Google Scholar] [CrossRef]
- Haque, J.; Ansari, K.R.; Srivastava, V.; Quraishi, M.A.; Obot, I.B. Pyrimidine derivatives as novel acidizing corrosion inhibitors for Copper useful for petroleum industry: A combined experimental and theoretical approach. J. Ind. Eng. Chem. 2017, 49, 176–188. [Google Scholar] [CrossRef]
- Singh, A.; Ebenso, E.E.; Quraishi, M.A.; Lin, Y. 5, 10, 15, 20-Tetra (4-pyridyl)-21H, 23H-porphine as an effective corrosion inhibitor for Copper in 3.5% NaCl solution. Int. J. Electrochem. Sci. 2014, 9, 7495–7505. [Google Scholar]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Isatin derivatives as a non-toxic corrosion inhibitor for mild copper in 20% H2SO4. Corros. Sci. 2015, 95, 62–70. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Kumar, A.; Liu, W.; Songsong, C.; Lin, Y. Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 copper in sweet corrosive environment. J. Alloys Compd. 2017, 712, 121–133. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Xu, X.; Sun, Z.; Kumar, A.; Lin, Y. An impending inhibitor useful for the oil and gas production industry: Weight loss, electrochemical, surface and quantum chemical calculation. Sci. Rep. 2017, 7, 14904–14921. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; lin, Y.; Obot, I.B.; Ebenso, E.E. Macrocyclic inhibitor for corrosion of N80 steel in 3.5% NaCl solution saturated with CO2. J. Mol. Liq. 2016, 219, 865–874. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Lgaz, H.; Chung, I.M. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. J. Colloid Interface Sci. 2020, 560, 225–236. [Google Scholar] [CrossRef] [PubMed]
Cinh | Rs | Rct | n1 | Yo1 | n2 | Yo2 | Rf | Χ2 | ηEIS |
---|---|---|---|---|---|---|---|---|---|
(mg/L) | (kΩ·cm2) | (kΩ·cm2) | (μF/cm2) | (μF/cm2) | (kΩ·cm2) | ×10−3 | (%) | ||
Blank | 9.29 | 87 | 0.72 | 57.8 | 0.37 | 59.2 | 7.2 | 1.01 | – |
100 | 3.01 | 130 | 0.76 | 34.2 | 0.43 | 51.1 | 20.4 | 3.50 | 33.0 |
300 | 23.5 | 568 | 0.81 | 23.5 | 0.59 | 45.4 | 310.2 | 4.53 | 84.6 |
600 | 15.51 | 905 | 0.83 | 19.5 | 0.74 | 31.3 | 415.5 | 2.73 | 90.3 |
Inhibitor | Ecorr | icorr | βa | −βc | η |
---|---|---|---|---|---|
(mg/L) | (mV/SCE) | (μA/cm2) | (mV/dec) | (mV/dec) | (%) |
Blank | −579 | 98.7 | 67 | 358 | – |
100 | −145 | 21.2 | 267 | 79 | 78.5 |
300 | −189 | 12.0 | 233 | 73 | 87.8 |
600 | −293 | 4.9 | 199 | 84 | 95.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Liu, M.; Ituen, E.; Lin, Y. Anti-Corrosive Properties of an Effective Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) Coating on Copper in a 3.5% NaCl Solution. Coatings 2020, 10, 241. https://doi.org/10.3390/coatings10030241
Singh A, Liu M, Ituen E, Lin Y. Anti-Corrosive Properties of an Effective Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) Coating on Copper in a 3.5% NaCl Solution. Coatings. 2020; 10(3):241. https://doi.org/10.3390/coatings10030241
Chicago/Turabian StyleSingh, Ambrish, Mingxing Liu, Ekemini Ituen, and Yuanhua Lin. 2020. "Anti-Corrosive Properties of an Effective Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) Coating on Copper in a 3.5% NaCl Solution" Coatings 10, no. 3: 241. https://doi.org/10.3390/coatings10030241
APA StyleSingh, A., Liu, M., Ituen, E., & Lin, Y. (2020). Anti-Corrosive Properties of an Effective Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) Coating on Copper in a 3.5% NaCl Solution. Coatings, 10(3), 241. https://doi.org/10.3390/coatings10030241