Films of Chitosan and Aloe vera for Maintaining the Viability and Antifungal Activity of Lactobacillus paracasei TEP6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Bacterial Strain
2.3. Aloe vera Gel
2.4. Cell Viability in Chitosan–Aloe vera Films
2.5. Effect of Film Composition on Cell Viability and Antifungal Capacity
2.6. Data Analysis
3. Results and Discussion
3.1. Cell Viability in Fresh Chitosan–Aloe vera Films
3.2. Cell Viability in Films Stored for 14 Days
3.3. Effect of Film Composition on Cell Viability and Antifungal Capacity
3.4. Effect of Factors on the Antifungal Capacity of the TEP6 Bacteria Immobilized in Freshly Prepared Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cui, X.; Shi, Y.; Gu, S.; Yan, X.; Chen, H.; Ge, J. Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China against enteropathogenic bacteria. Probiotics Antimicrob. Proteins 2018, 10, 601–610. [Google Scholar] [CrossRef]
- Da Costa, K.; de Souza, G.; Brandão, L.; de Lima, R.; García, E.; Dos Santos-Lima, M. Exploiting antagonistic activity of fruit-derived Lactobacillus to control pathogenic bacteria in fresh cheese and chicken meat. Food Res. Int. 2018, 108, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Lele, V.; Bartkevics, V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT Food Sci. Technol. 2018, 89, 307–314. [Google Scholar] [CrossRef]
- Luz, C.; Saladino, F.; Luciano, F.; Mañes, J.; Meca, G. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT Food Sci. Technol. 2017, 81, 128–135. [Google Scholar] [CrossRef]
- Marín, A.; Plotto, A.; Atarés, L.; Chiralt, A. Lactic acid bacteria incorporated into edible coatings to control fungal growth and maintain postharvest quality of grapes. HortScience 2019, 54, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Roselló, G.; Bonaterra, A.; Franceés, J.; Montesinos, L.; Badosa, E.; Montesinos, E. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur. J. Plant Pathol. 2013, 137, 621–633. [Google Scholar]
- Barrios-Roblero, C.; Rosas-Quijano, R.; Salvador-Figueroa, M.; Gálvez-López, D.; Vázquez-Ovando, A. Antifungal lactic acid bacteria isolated from fermented beverages with activity against Colletotrichum gloeosporioides. Food Biosci. 2019, 29, 47–54. [Google Scholar] [CrossRef]
- Das, A.; Ray, S.; Raychaudhuri, U.; Chakraborty, R. Microencapsulation of probiotic bacteria and its potential application in food technology. Int. J. Agric. Environ. Biotechnol. 2014, 7, 47–53. [Google Scholar] [CrossRef]
- Espitia, P.; Batista, R.; Azeredo, H.; Otoni, C. Probiotics and their potential applications in active edible films and coatings. Food Res. Int. 2016, 90, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.; Soares, J.; Sousa, S.; Madureira, A.; Gomes, A.; Pintado, M. Edible films as carrier for lactic acid bacteria. LWT Food Sci. Technol. 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Vieira, J.; Flores-López, M.; de Rodríguez, D.; Sousa, M.; Vicente, A.; Martins, J. Effect of chitosan—Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Corbo, M.; Sinigaglia, M.; Speranza, B.; Campaniello, D.; Altieri, C. Effects of inulin, fructooligosacharides/glucose and pH on the shape of the death kinetic of Lactobacillus reuteri DSM 20016. Int. J. Food Sci. Technol. 2016, 51, 2251–2259. [Google Scholar] [CrossRef]
- Dhumal, C.V.; Sarkar, P. Composite edible films and coatings from food-grade biopolymers. J. Food Sci. Technol. 2018, 55, 4369–4383. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Sarkar, S.; Sethi, L.; Ghosh, S. Development of chitosan based optimized edible coating for tomato (Solanum lycopersicum) and its characterization. J. Food Sci. Technol. 2018, 55, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar]
- Mohebbi, M.; Ansarifar, E.; Hasanpour, N.; Amiryousefi, M. Suitability of Aloe vera and gum tragacanth as edible coatings for extending the shelf life of button mushroom. Food Bioprocess Technol. 2012, 5, 3193–3202. [Google Scholar]
- Nagpal, R.; Kumar, M.; Marotta, F. Effect of Aloe vera juice on growth and activities of Lactobacilli in-vitro. Acta Biomed. 2012, 83, 183–188. [Google Scholar]
- Chiodelli, G.; Pellizzoni, M.; Ruzickova, G.; Lucini, L. Effect of different Aloe fractions on the growth of lactic acid bacteria. J. Food Sci. 2017, 82, 219–224. [Google Scholar] [CrossRef]
- Monzón-Ortega, K.; Salvador-Figueroa, M.; Gálvez-López, D.; Rosas-Quijano, R.; Ovando-Medina, I.; Vázquez-Ovando, A. Characterization of Aloe vera-chitosan composite films and their use for reducing the disease caused by fungi in papaya Maradol. J. Food Sci. Technol. 2018, 55, 4747–4757. [Google Scholar] [CrossRef]
- Hegyi, F.; Zalán, Z.; Halasz, A. Improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay., for measuring the viability of lactic acid bacteria. Acta Aliment. Hung. 2012, 41, 506–512. [Google Scholar] [CrossRef]
- Abbasiliasi, S.; Tan, J.S.; Ibrahimd, T.A.T.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Egusa, M.; Iwamoto, R.; Izawa, H.; Morimoto, M.; Saimoto, H.; Kaminaka, H.; Ifuku, S. Characterization of chitosan nanofiber sheets for antifungal application. Int. J. Mol. Sci. 2015, 16, 26202–26210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Ovando, A.; López-Hilerio, H.; Salvador-Figueroa, M.; Adriano-Anaya, L.; Rosas-Quijano, R.; Gálvez-López, D. Combination of uv-c radiation and chitosan films enriched with essential oils for fungi control in papaya ‘Maradol’. Rev. Bras. Frutic. 2018, 40, 688. [Google Scholar]
- Nagpal, R.; Kaur, A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol. Food Nutr. 2011, 50, 63–68. [Google Scholar] [CrossRef]
- Ai, Z.; Lv, X.; Huang, S.; Liu, G.; Sun, X.; Chen, H. The effect of controlled and uncontrolled pH cultures on the growth of Lactobacillus delbrueckii subsp. bulgaricus. LWT Food Sci. Technol. 2017, 77, 269–275. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Toplaghaltsyan, A.; Bazukyan, I.; Trchounian, A. The effects of different carbon sources on the antifungal activity by lactic acid bacteria. Curr. Microbiol. 2017, 74, 168–174. [Google Scholar] [CrossRef]
- Sidooski, T.; Brandelli, A.; Bertoli, S.; Souza, C.; Carvalho, L. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria—A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2839–2849. [Google Scholar] [CrossRef]
- Bravo-De la Cruz, C.M.; Rosas-Quijano, R.; Gálvez-López, D.; Albores-Flores, V.; Vázquez-Ovando, A. Antifungal ability of chitosan biofilms containing lactic acid bacteria. J. Negat. No Posit. Results. in press.
Formulation | Ratio of Ch: A | pH | Formulation | Ratio of Ch: A | pH |
---|---|---|---|---|---|
T1 | 90:10 | 4.5 | T9 | 90:10 | 5.5 |
T2 | 80:20 | 4.5 | T10 | 80:20 | 5.5 |
T3 | 70:30 | 4.5 | T11 | 70:30 | 5.5 |
T4 | 60:40 | 4.5 | T12 | 60:40 | 5.5 |
T5 | 50:50 | 4.5 | T13 | 50:50 | 5.5 |
T6 | 25:75 | 4.5 | T14 | 25:75 | 5.5 |
T7 | 100:0 | 4.5 | T15 | 100:0 | 5.5 |
T8 | 0:100 | 4.5 | T16 | 0:100 | 5.5 |
Formulation | Glycerol | Lactose | Glucose | pH | Aloe vera |
---|---|---|---|---|---|
1 | 1 | −1 | −1 | −1 | −1 |
2 | −1 | −1 | −1 | 1 | 1 |
3 | −1 | 1 | −1 | −1 | 1 |
4 | −1 | −1 | 1 | 1 | −1 |
5 | −1 | 1 | 1 | −1 | −1 |
6 | 1 | −1 | 1 | −1 | 1 |
7 | 1 | 1 | 1 | 1 | 1 |
8 | 1 | 1 | −1 | 1 | −1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Menéndez, C.; Gálvez-López, D.; Rosas-Quijano, R.; Salvador-Figueroa, M.; Ovando-Medina, I.; Vázquez-Ovando, A. Films of Chitosan and Aloe vera for Maintaining the Viability and Antifungal Activity of Lactobacillus paracasei TEP6. Coatings 2020, 10, 259. https://doi.org/10.3390/coatings10030259
Barragán-Menéndez C, Gálvez-López D, Rosas-Quijano R, Salvador-Figueroa M, Ovando-Medina I, Vázquez-Ovando A. Films of Chitosan and Aloe vera for Maintaining the Viability and Antifungal Activity of Lactobacillus paracasei TEP6. Coatings. 2020; 10(3):259. https://doi.org/10.3390/coatings10030259
Chicago/Turabian StyleBarragán-Menéndez, Carolina, Didiana Gálvez-López, Raymundo Rosas-Quijano, Miguel Salvador-Figueroa, Isidro Ovando-Medina, and Alfredo Vázquez-Ovando. 2020. "Films of Chitosan and Aloe vera for Maintaining the Viability and Antifungal Activity of Lactobacillus paracasei TEP6" Coatings 10, no. 3: 259. https://doi.org/10.3390/coatings10030259
APA StyleBarragán-Menéndez, C., Gálvez-López, D., Rosas-Quijano, R., Salvador-Figueroa, M., Ovando-Medina, I., & Vázquez-Ovando, A. (2020). Films of Chitosan and Aloe vera for Maintaining the Viability and Antifungal Activity of Lactobacillus paracasei TEP6. Coatings, 10(3), 259. https://doi.org/10.3390/coatings10030259