Pulsed Laser Deposition of In0.1Ga0.9N Nanoshapes by Nd:YAG Technique
Abstract
:1. Introduction
2. Material and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Cai, Q.; Zhang, B.; Ge, M.; Chen, D.; Chen, J.; Zhib, T.; Wang, L.; Zhang, R.; Zheng, Y. Structural characterization of InGaN multi-quantum-wells grown on high indium content InGaN template with {1 0 1¯m} faceted surface. Mater. Lett. 2017, 208, 19–22. [Google Scholar] [CrossRef]
- Amano, H. Progress and prospect of the growth of wide bandgap group III nitrides: Development of the growth method for single-crystal bulk GaN. Jpn. J. Appl. Phys. 2013, 52, 050001. [Google Scholar] [CrossRef] [Green Version]
- Specht, P.; Kisielowski, C. On the chemical homogeneity of InxGa1−xN alloys—Electron microscopy at the edge of technical limits. Mater. Sci. Semicond. Process. 2017, 65, 24–34. [Google Scholar] [CrossRef]
- Li, J.; Nam, K.; Nakarmi, M.; Lin, J.; Jiang, H. Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 2003, 83, 5163–5165. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. J. Sens. 2018, 18, 2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Hasan, M. Compound semiconductor epitaxial growth techniques. IJTFST 2016, 5, 45–49. [Google Scholar]
- Sanguino, P.; Niehus, M.; Melo, L.; Schwarz, R.; Koynov, S.; Monteiro, T.; Soares, J.; Alves, H.; Meyer, B.K. Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma. Solid-State Electron. 2003, 47, 559–563. [Google Scholar] [CrossRef]
- Shen, K.; Wang, T.; Wuu, D.; Horng, R. High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target. Opt. Exp. 2012, 20, 15149–15156. [Google Scholar] [CrossRef] [PubMed]
- Kashyout, A.B.; Fathy, M.; Gad, S.; Badr, Y.; Bishara, A.A. Synthesis of nanostructure InxGa1−xN bulk alloys and thin films for LED devices. Photonics 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Yeh, C.C.; Chen, C.H.; Yu, M.Y.; Liu, H.L.; Wu, J.J.; Chen, K.H.; Chen, L.C.; Peng, J.Y.; Chen, Y.F. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 2001, 123, 2791–2798. [Google Scholar] [CrossRef]
- Wang, X.; Yoshikaw, A. Molecular beam epitaxy growth of GaN, AlN and InN. Prog. Cryst. Growth Charact. Mater. 2004, 48, 42–103. [Google Scholar] [CrossRef]
- Itoh, T.; Hibino, S.; Sahas, T.; Kato, Y.; Koiso, S.; Ohashi, F.; Nonomura, S. InXGa1−XN films deposited by reactive RF-sputtering. J. Non-Cryst. Solids 2012, 358, 2362–2365. [Google Scholar] [CrossRef]
- Murthy, V.; Srivani, A.; Raghavaiah, G. Physical studies in III-nitride semiconductor alloys. Int. J. Thin Film. Sci. Technol. 2017, 6, 15–27. [Google Scholar] [CrossRef]
- Guarneros, C.; Espinosa, J.; Sánchez, V.; López, U. Study of InxGa1−xN layers growth on GaN/Al2O3 by MOCVD at different pressures. Superf. Y Vacío 2013, 26, 107–110. [Google Scholar]
- Ohta, J.; Fujioka, H.; Honke, T.; Oshima, M. Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source. Thin Solid Film 2004, 457, 109–113. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 2007, 58, 883–891. [Google Scholar] [CrossRef]
- Hernández, S.; Cuscó, R.; Pastor, D.; Artús, L.; O’Donnell, K.; Martin, R.; Watson, I.; Nanishi, Y.; Calleja, E. Raman-scattering study of the InGaN alloy over the whole composition range. J. Appl. Phys. 2005, 98, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Abata, A.; Leite, J.; Lima, A.; Silveira, E.; Lemos, V.; Frey, T.; As, D.; Schikora, D.; Lischk, K. Raman scattering study of zinc blende InxGa1−xN alloys. Phys. Status Solidi 1999, 216, 1095–1097. [Google Scholar]
- Talnishnikh, N.; Ivanov, A.; Smirnov, A.; Shmidt, E.S.N. The contribution of the in distribution in InGaN/GaN MQW to the “green gap” phenomenon. J. Phys. Conf. Ser. 2019, 1199, 012015. [Google Scholar] [CrossRef]
- Sun, W.; Tan, C.; Tansu, N. III-nitride digital alloy:electronics and optoelectronics properties of the InN/GaN ultra-short period. Sci. Rep. 2017, 7, 1–8. [Google Scholar]
- Li, J.; Zhu, H. Chapter 1— Advances in III-V semiconductor nanowires and nanodevices. In Advances in III-V Semiconductor Nanowires and Nanodevices; Li, J., Wang, D., LaPierre, R., Eds.; Bentham eBooks: Sharjah, United Arab Emirates, 2011; pp. 3–21. [Google Scholar]
- Zhao, C.; Yu, L.; Tang, C.; Li, M.; Zhang, J. The factors influencing the band gap bowing of III nitride alloys. Adv. Mater. Res. 2011, 298, 13–19. [Google Scholar] [CrossRef]
- Sklute, E.; Kashyap, S.; Dyar, M.; Holden, J.; Tague, T.; Wang, P.; Jaret, S. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides. Phys. Chem. Miner. 2018, 45, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.; Stampf, C.; Neugebauer, J. Theory of doping and defects in III-Vnitrides. J. Cryst. Grow. 1998, 189, 505–510. [Google Scholar] [CrossRef] [Green Version]
EDX | In% | Ga% | N% |
20.34 | 70.85 | 8.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, S.; Fathy, M.; Badr, Y.; Kashyout, A.E.-H.B. Pulsed Laser Deposition of In0.1Ga0.9N Nanoshapes by Nd:YAG Technique. Coatings 2020, 10, 465. https://doi.org/10.3390/coatings10050465
Gad S, Fathy M, Badr Y, Kashyout AE-HB. Pulsed Laser Deposition of In0.1Ga0.9N Nanoshapes by Nd:YAG Technique. Coatings. 2020; 10(5):465. https://doi.org/10.3390/coatings10050465
Chicago/Turabian StyleGad, Sara, Marwa Fathy, Yehia Badr, and Abd El-Hady B. Kashyout. 2020. "Pulsed Laser Deposition of In0.1Ga0.9N Nanoshapes by Nd:YAG Technique" Coatings 10, no. 5: 465. https://doi.org/10.3390/coatings10050465
APA StyleGad, S., Fathy, M., Badr, Y., & Kashyout, A. E. -H. B. (2020). Pulsed Laser Deposition of In0.1Ga0.9N Nanoshapes by Nd:YAG Technique. Coatings, 10(5), 465. https://doi.org/10.3390/coatings10050465