The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Micro-Raman Spectroscopy
2.3. Scanning Electron Microscope
2.4. Transmission Electron Microscope
2.5. Photoelectrochemical Measurements
3. Results
3.1. Mineralogical Characteristics of Soil Ferromanganese Coatings
3.2. Mineralogical Characteristics of Rock Ferromanganese Coatings
3.3. Semiconducting Properties of Natural Ferromanganese Coatings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ross, S.J.; Franzmeier, D.P.; Roth, C.B. Mineralogy and chemistry of manganese oxides in some indiana soils. Soil Sci. Soc. Am. J. 1976, 40, 137–143. [Google Scholar] [CrossRef]
- Tokashiki, Y.; Dixon, J.B.; Golden, D.C. Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Sci. Soc. Am. J. 1986, 50, 1079–1084. [Google Scholar] [CrossRef]
- Tan, W.F.; Liu, F.; Li, Y.H.; He, J.Z.; Li, X.Y. Mineralogy of manganese oxide minerals in iron manganese nodules of several main soils in China. Pedosphere 2000, 10, 265–274. [Google Scholar] [CrossRef]
- Huang, L.; Hong, J.; Tan, W.F.; Hu, H.Q.; Liu, F.; Wang, M.K. Characteristics of micromorphology and element distribution of iron-manganese cutans in typical soils of subtropical China. Geoderma 2008, 146, 40–47. [Google Scholar] [CrossRef]
- Huang, L.; Liu, F.; Tan, W.F.; Hu, H.Q.; Wang, M.K. Geochemical characteristics of selected elements in iron-manganese cutans and matrices of Alfisols in central China. J. Geochem. Explor. 2009, 103, 30–36. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. Desert varnish: The importance of clay minerals. Science 1977, 196, 1446–1448. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. The manganese- and iron-oxide mineralogy of desert varnish. Chem. Geol. 1979, 25, 79–94. [Google Scholar] [CrossRef]
- McKeown, D.A.; Post, J.E. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am. Mineral. 2001, 86, 701–713. [Google Scholar] [CrossRef]
- Garvie, L.A.J.; Burt, D.M.; Buseck, P.R. Nanometer-scale complexity, growth, and diagenesis in desert varnish. Geology 2008, 36, 215–218. [Google Scholar] [CrossRef]
- Xu, X.; Ding, H.; Li, Y.; Lu, A.; Li, Y.; Wang, C. Mineralogical characteristics of Mn coatings from different weathering environments in China: Clues on their formation. Mineral. Petrol. 2018, 112, 671–683. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Li, Y.; Lu, A.; Qiao, R.; Liu, K.; Ding, H.; Wang, C. Characteristics of desert varnish from nanometer to micrometer scale: A photo-oxidation model on its formation. Chem. Geol. 2019, 522, 55–70. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.; Chu, S.; et al. Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Proc. Natl. Acad. Sci. USA 2019, 116, 9741–9746. [Google Scholar] [CrossRef] [Green Version]
- Perry, R.S.; Adams, J.B. Desert varnish: Evidence for cyclic deposition of manganese. Nature 1978, 276, 489–491. [Google Scholar] [CrossRef]
- Liu, T.; Broecker, W.S. Millennial-scale varnish microlamination dating of late Pleistocene geomorphic features in the drylands of western USA. Geomorphology 2013, 187, 38–60. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.; Bland, P.A. Dating climatic change in hot deserts using desert varnish on meteorite finds. Earth Planet. Sci. Lett. 2003, 206, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.F.; Liu, F.; Feng, X.H.; Huang, Q.Y.; Li, X.Y. Adsorption and redox reactions of heavy metals on Fe–Mn nodules from Chinese soils. J. Colloid Interface Sci. 2005, 284, 600–605. [Google Scholar] [CrossRef]
- Sherman, D.M. Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim. Cosmochim. Acta 2005, 69, 3249–3255. [Google Scholar] [CrossRef]
- Zaied, M.; Chutet, E.; Peulon, S.; Bellakhal, N.; Desmazières, B.; Dachraoui, M.; Chaussé, A. Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto SnO2. Appl. Catal. B Environ. 2011, 107, 42–51. [Google Scholar] [CrossRef]
- Ye, Q.; Lu, H.; Zhao, J.; Cheng, S.; Kang, T.; Wang, D.; Dai, H. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Appl. Surf. Sci. 2014, 317, 892–901. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Mao, M.; Ren, L.; Zhao, X. Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity. ACS Appl. Mater. Interfaces 2014, 6, 14981–14987. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.W.C.; Chen, H.L.; Wang, M.C.; Seshaiah, K. Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. Chemosphere 2009, 74, 1125–1133. [Google Scholar] [CrossRef]
- Nakayama, M.; Shamoto, M.; Kamimura, A. Surfactant-induced electrodeposition of layered manganese oxide with large interlayer space for catalytic oxidation of phenol. Chem. Mater. 2010, 22, 3584–3593. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, H.; Wang, X.; Zeng, C.; Lu, A.; Li, Y.; Wang, C. Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol. J. Environ. Sci. 2017, 52, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Wiechen, M.; Zaharieva, I.; Dau, H.; Kurz, P. Layered manganese oxides for water-oxidation: Alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem. Sci. 2012, 3, 2330–2339. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.M.; Go, Y.B.; Mui, M.; Gardner, G.; Zhang, Z.J.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G.C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: Structural requirements for catalysis. J. Am. Chem. Soc. 2013, 135, 3494–3501. [Google Scholar] [CrossRef]
- Georgiou, C.D.; Sun, H.J.; Mckay, C.P.; Grintzalis, K.; Papapostolou, I.; Zisimopoulos, D.; Panagiotidis, K.; Zhang, G.; Koutsopoulou, E.; Christidis, G.E.; et al. Evidence for photochemical production of reactive oxygen species in desert soils. Nat. Commun. 2015, 6, 7100. [Google Scholar] [CrossRef] [Green Version]
- Shinde, S.K.; Dubal, D.P.; Ghodake, G.S.; Fulari, V.J. Electronic impurities (Fe, Mn) doping in CdSe nanostructures for improvements in photoelectrochemical applications. RSC Adv. 2014, 4, 33184–33189. [Google Scholar] [CrossRef] [Green Version]
- Shinde, S.K.; Dubal, D.P.; Ghodake, G.S.; Lee, L.S.; Lohar, G.M.; Rath, M.C.; Fulari, V.J. Baking impact of Fe composition on CdSe films for solar cell application. Mater. Lett. 2014, 132, 243–246. [Google Scholar] [CrossRef]
- Kwon, K.D.; Refson, K.; Sposito, G. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite. Geochim. Cosmochim. Acta 2009, 73, 4142–4150. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.M.; Rossman, G.R. The tetravalent manganese oxides: Identification, hydration, and structural relationships by infrared spectroscopy. Am. Mineral. 1979, 64, 1199–1218. [Google Scholar]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides—Part 1. Periodic structures. Spectrochim. Acta Part A 2004, 60, 689–700. [Google Scholar] [CrossRef]
- Li, Y.; Lu, A.H.; Wang, C.Q.; Wu, X.L. Characterization of natural sphalerite as a novel visible light-driven photocatalyst. Sol. Energy Mater. Sol. Cells 2008, 92, 953–959. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Silva, S.V.; Oliveira, M.T.D. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Beattie, I.R.; Gilson, T.R. The single-crystal Raman spectra of nearly opaque materials. Iron (III) oxide and chromium (III) oxide. J. Chem. Soc. 1970, 1, 980–986. [Google Scholar] [CrossRef]
- Zoppi, A.; Lofrumento, C.; Castellucci, E.M.; Sciau, P. Al-for-Fe substitution in hematite: The effect of low Al concentrations in the Raman spectrum of Fe2O3. J. Raman Spectrosc. 2008, 39, 40–46. [Google Scholar] [CrossRef]
- Dias, A.; Sá, R.G.; Spitale, M.C.; Athayde, M.; Ciminelli, V.S.T. Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation. Mater. Res. Bull. 2008, 43, 1528–1538. [Google Scholar] [CrossRef]
- Ferris, J.P. Mineral catalysis and prebiotic synthesis: Montmorillonite-catalyzed formation of RNA. Elements 2005, 1, 145–149. [Google Scholar] [CrossRef]
- Huber, C.; Eisenreich, W.; Hecht, S.; Wächtershäuser, G. A possible primordial peptide cycle. Science 2003, 301, 938–940. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63, 1909–1920. [Google Scholar] [CrossRef]
- Morgan, B.J.; Watson, G.W. A density functional theory + U study of oxygen vacancy formation at the (110), (100), (101), and (001) surfaces of rutile TiO2. J. Phys. Chem. C 2009, 113, 7322–7328. [Google Scholar] [CrossRef]
- Spichiger-Ulmann, M.; Augustynski, J. Aging effects in n-type semiconducting WO3 films. J. Appl. Phys. 1983, 54, 6061–6064. [Google Scholar] [CrossRef]
- Shinde, S.S.; Sami, A.; Lee, J.H. Sulfur mediated graphitic carbon nitride/S-Se-graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting. Carbon 2016, 96, 929–936. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Liu, F.F.; Li, Y.; Ding, H.R.; Ding, C.; Lu, A.H. Researches on the band structure of several types of manganese oxides. Bull. Miner. Petrol. Geochem. 2017, 36, 476–482, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Learman, D.R.; Wankel, S.D.; Webb, S.M.; Martinez, N.; Madden, A.S.; Hansel, C.M. Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim. Cosmochim. Acta 2011, 75, 6048–6063. [Google Scholar] [CrossRef]
- Lan, S.; Wang, X.; Xiang, Q.; Yin, H.; Tan, W.; Qiu, G.; Liu, F.; Zhang, J.; Feng, X. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochim. Cosmochim. Acta 2017, 211, 79–96. [Google Scholar] [CrossRef]
- Sunda, W.G.; Huntsman, S.A.; Harvey, G.R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 1983, 301, 234–236. [Google Scholar] [CrossRef]
- Wells, M.L.; Mayer, L.M.; Donard, O.F.X.; Sierra, M.M.D.S.; Ackelson, S.G. The photolysis of colloidal iron in the oceans. Nature 1991, 353, 248–250. [Google Scholar] [CrossRef]
- Delgadillo-Hinojosa, F.; Segovia-Zavala, J.A.; Huerta-Díaz, M.A.; Atilano-Silva, H. Influence of geochemical and physical processes on the vertical distribution of manganese in Gulf of California waters. Deep Sea Res. 2006, 53, 1301–1319. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2015, 5, 8326–8339. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Li, Y.; Jin, S.; Wang, X.; Wu, X.; Zeng, C.; Li, Y.; Ding, H.; Hao, R.; Lv, M.; et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat. Commun. 2012, 3, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struyk, Z.; Sposito, G. Redox properties of standard humic acids. Geoderma 2001, 102, 329–346. [Google Scholar] [CrossRef]
- Zang, L.; Liu, C.Y.; Ren, X.M. Photochemistry of semiconductor particles 3. Effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols. J. Photochem. Photobiol. A 1995, 85, 239–245. [Google Scholar] [CrossRef]
Sample | Total Degradation Ratio (%) | Physical Adsorption Ratio (%) | Photocatalysis Degradation Ratio (%) |
---|---|---|---|
Soil Fe coating | 34.7 | 6.8 | 27.9 |
Soil Fe/Mn coating | 50.6 | 7.3 | 43.3 |
Rock Fe coating | 20.8 | 6.5 | 14.3 |
Rock Fe/Mn coating | 67.2 | 8.8 | 58.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Ding, H.; Li, Y.; Wang, H.; Lu, A. The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties. Coatings 2020, 10, 666. https://doi.org/10.3390/coatings10070666
Xu X, Ding H, Li Y, Wang H, Lu A. The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties. Coatings. 2020; 10(7):666. https://doi.org/10.3390/coatings10070666
Chicago/Turabian StyleXu, Xiaoming, Hongrui Ding, Yan Li, Haoran Wang, and Anhuai Lu. 2020. "The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties" Coatings 10, no. 7: 666. https://doi.org/10.3390/coatings10070666
APA StyleXu, X., Ding, H., Li, Y., Wang, H., & Lu, A. (2020). The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties. Coatings, 10(7), 666. https://doi.org/10.3390/coatings10070666