The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Capturing CNPs during DC Sputtering with an Ag Target
3.2. Ag Thin Film Deposition and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kato, K.; Omoto, H.; Tomioka, T.; Takamatsu, A. Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering. Sol. Energy Mater. Sol. Cells 2011, 95, 2352–2356. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lin, S.-J.; Lin, C.-H.; Tsai, C.-S.; Lu, Y.-J. Size effect of Ag nanoparticles on surface plasmon resonance. Surf. Coat. Technol. 2008, 202, 5339–5342. [Google Scholar] [CrossRef]
- Pan, Y.; Fan, Y.; Niu, J. Optical properties of ultra-thin silver films deposited by thermal evaporation and its application in optical filters. Infrared Phys. Technol. 2020, 104. [Google Scholar] [CrossRef]
- Park, H.K.; Yoon, J.K.; Kim, K. Novel fabrication of Ag thin film on glass for efficient surface-enhanced raman scattering. Langmuir 2006, 22, 1626–1629. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, K.S.; Sivasankar Reddy, A. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering. J. Appl. Phys. 2011, 110, 063508. [Google Scholar] [CrossRef]
- Bittner, A.; Seidel, H.; Schmid, U. Electromigration resistance and long term stability of textured silver thin films on LTCC. Microelectron. Eng. 2011, 88, 127–130. [Google Scholar] [CrossRef]
- Tsuda, Y.; Omoto, H.; Tanaka, K.; Ohsaki, H. The underlayer effects on the electrical resistivity of Ag thin film. Thin Solid Film. 2006, 502, 223–227. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 2012, 8, 37–45. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007, 3, 168–171. [Google Scholar] [CrossRef]
- Jeon, I.-D.; Kim, D.-Y.; Hwang, N.-M. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver. Z. Für. Met. 2005, 96, 186–190. [Google Scholar] [CrossRef]
- Hajakbari, F.; Ensandoust, M. Study of thermal annealing effect on the properties of silver thin films prepared by dc magnetron sputtering. Acta Phys. Pol. A 2016, 129, 680–682. [Google Scholar] [CrossRef]
- Jung, Y.S. Study on texture evolution and properties of silver thin films prepared by sputtering deposition. Appl. Surf. Sci. 2004, 221, 281–287. [Google Scholar] [CrossRef]
- Maréchal, N.; Quesnel, E.; Pauleau, Y. Silver thin films deposited by magnetron sputtering. Thin Solid Film. 1994, 241, 34–38. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, H.; Guo, Y.; Sun, Y.; Yang, D.; Da, D. Preparation and characterization of nanostructured silver thin films deposited by radio frequency magnetron sputtering. Thin Solid Film. 2000, 375, 300–303. [Google Scholar] [CrossRef]
- Xu, K.; Hao, L.; Du, M.; Mi, J.; Yu, Q.; Li, S.; Wang, J.; Li, S. Thermal emittance of Ag films deposited by magnetron sputtering. Vacuum 2020, 174. [Google Scholar] [CrossRef]
- Baghriche, O.; Zertal, A.; Ehiasarian, A.P.; Sanjines, R.; Pulgarin, C.; Kusiak-Nejman, E.; Morawski, A.W.; Kiwi, J. Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Film. 2012, 520, 3567–3573. [Google Scholar] [CrossRef]
- West, G.T.; Kelly, P.J.; Bradley, J.W. A Comparison of thin silver films grown onto zinc oxide via conventional magnetron sputtering and hipims deposition. IEEE Trans. Plasma Sci. 2010, 38, 3057–3061. [Google Scholar] [CrossRef]
- Markov, I.V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd ed.; World Scientific: Singapore, 2003; pp. 1–546. [Google Scholar] [CrossRef]
- Taden, A.; Landfester, K.; Antonietti, M. Crystallization of dyes by directed aggregation of colloidal intermediates: A model case. Langmuir 2004, 20, 957–961. [Google Scholar] [CrossRef]
- Gebauer, D.; Völkel, A.; Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819. [Google Scholar] [CrossRef] [Green Version]
- Amos, F.F.; Dai, L.; Kumar, R.; Khan, S.R.; Gower, L.B. Mechanism of formation of concentrically laminated spherules: Implication to Randall’s plaque and stone formation. Urol. Res. 2009, 37, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-S.; Lee, S.-H.; Kim, D.-S.; Kim, K.-S.; Park, S.-W.; Hwang, N.-M. Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition. J. Cryst. Growth 2017, 458, 8–15. [Google Scholar] [CrossRef]
- Sadri, B.; Pernitsky, D.; Sadrzadeh, M. Aggregation and deposition of colloidal particles: Effect of surface properties of collector beads. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 46–52. [Google Scholar] [CrossRef]
- Song, R.; Krasia-Christoforou, T.; Debus, C.; Cölfen, H. Structure and magnetic property control of copper hydroxide acetate by non-classical crystallization. Small 2017, 13, 1602702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, N.M. Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes; Springer: Berlin, Germany, 2016; Volume 60, pp. 1–332. [Google Scholar] [CrossRef]
- Park, S.-W.; Jung, J.-S.; Kim, K.-S.; Kim, K.-H.; Hwang, N.-M. Effect of bias applied to the substrate on the low temperature growth of silicon epitaxial films during RF-PECVD. Cryst. Growth Des. 2018, 18, 5816–5823. [Google Scholar] [CrossRef]
- Clare, B.W.; Talukder, G.; Jennings, P.J.; Cornish, J.C.L.; Hefter, G.T. Effect of charge on bond strength in hydrogenated amorphous silicon. J. Comput. Chem. 1994, 15, 644–652. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Kim, D.-Y.; Hwang, N.-M. Generation of charged Ti nanoparticles and their deposition behavior with a substrate bias during RF magnetron sputtering. Coatings 2020, 10, 443. [Google Scholar] [CrossRef]
- Chapman, B. Glow Discharge Processes: Sputtering and Plasma Etching; Wiley: Hoboken, NJ, USA, 1980; pp. 1–406. [Google Scholar]
- Igathinathane, C.; Pordesimo, L.O.; Columbus, E.P.; Batchelor, W.D.; Methuku, S.R. Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 1986, 56, 616–619. [Google Scholar] [CrossRef]
- Zhang, M.; Efremov, M.Y.; Schiettekatte, F.; Olson, E.A.; Kwan, A.T.; Lai, S.L.; Wisleder, T.; Greene, J.E.; Allen, L.H. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 2000, 62, 10548–10557. [Google Scholar] [CrossRef] [Green Version]
- Dove, D.B. Possible influence of electric charge effects on the initial growth processes occurring during the vapor deposition of metal films onto substrates inside the electron microscope. J. Appl. Phys. 1964, 35, 2785–2786. [Google Scholar] [CrossRef]
- Muniz, F.T.; Miranda, M.A.; Morilla Dos Santos, C.; Sasaki, J.M. The scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. Afound. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, G.-S.; Kim, D.-Y.; Hwang, N.-M. The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering. Coatings 2020, 10, 736. https://doi.org/10.3390/coatings10080736
Jang G-S, Kim D-Y, Hwang N-M. The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering. Coatings. 2020; 10(8):736. https://doi.org/10.3390/coatings10080736
Chicago/Turabian StyleJang, Gil-Su, Du-Yun Kim, and Nong-Moon Hwang. 2020. "The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering" Coatings 10, no. 8: 736. https://doi.org/10.3390/coatings10080736
APA StyleJang, G. -S., Kim, D. -Y., & Hwang, N. -M. (2020). The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering. Coatings, 10(8), 736. https://doi.org/10.3390/coatings10080736