Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Sols and Films
2.2. Characterization of Sols and Films
3. Results and Discussion
3.1. Computer-Aided Design of Triple-Layer AR Coating
3.2. Optical Properties of Films SiO2 and Nb2O5
3.3. Selection of TiO2–SiO2 Hybrid Materials for Bottom Layer
3.4. Assembly of Triple-Layer Broadband AR Coating
3.5. Durability Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Joo, W.; Kim, H.J.; Kim, J.K. Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films. Langmuir 2010, 26, 5110–5114. [Google Scholar] [CrossRef] [PubMed]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.; Xia, B.; Zhang, Y.; Jiang, B. Template-free sol–gel preparation of nanoporous ORMOSIL films with adjustable refractive index. Mater. Lett. 2016, 176, 5–8. [Google Scholar] [CrossRef]
- Cui, X.; Ding, R.; Wang, M.; Zhang, C.; Zhang, C.; Zhang, J.; Xu, Y. In Situ surface assembly derived ultralow refractive index MgF2–SiO2 hybrid film for tri-layer broadband antireflective coating. Adv. Opt. Mater. 2016, 4, 722–730. [Google Scholar] [CrossRef]
- Chen, D. Anti-reflection (AR) coatings made by sol–gel processes: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 313–336. [Google Scholar] [CrossRef]
- Liang, L.; Xu, Y.; Wu, D.; Sun, Y. A simple sol–gel route to ZrO2 films with high optical performances. Mater. Chem. Phys. 2009, 114, 252–256. [Google Scholar] [CrossRef]
- Rivero, P.; Garcia, J.; Quintana, I.; Rodriguez, R. Design of nanostructured functional coatings by using wet-chemistry methods. Coatings 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Thomas, I.M. Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Opt. 1992, 31, 6145–6149. [Google Scholar] [CrossRef]
- Sun, J.; Wu, B.; Jia, H.; Wu, D.; Xu, Y. Fluoroalkyl-grafted mesoporous silica antireflective films with enhanced stability in vacuum. Opt. Lett. 2012, 37, 4095–4097. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Machado, M.; Tercjak, A. Antireflective mesoporous silica coatings by optimization of water content in acid-catalyzed sol-gel method for application in glass covers of concentrated photovoltaic modules. J. Colloid Interface Sci. 2019, 534, 370–380. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Wu, D.; Sun, Y.H.; Huang, Z.X.; Jiang, X.D.; Wei, X.F.; Li, Z.H.; Dong, B.Z.; Wu, Z.H. Durable solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion. J. Opt. Soc. Am. B 2005, 22, 905–912. [Google Scholar] [CrossRef]
- Sun, J.; Cui, X.; Zhang, C.; Zhang, C.; Ding, R.; Xu, Y. A broadband antireflective coating based on a double-layer system containing mesoporous silica and nanoporous silica. J. Mater. Chem. C 2015, 3, 7187–7194. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Cai, S.; You, D.; Yan, L.-H.; Lv, H.-B.; Yuan, X.-D.; Jiang, B. Template-Free Sol-Gel Preparation of Superhydrophobic ORMOSIL Films for double-wavelength broadband antireflective coatings. Adv. Funct. Mater. 2013, 23, 4361–4365. [Google Scholar] [CrossRef]
- Zou, L.; Li, X.; Zhang, Q.; Shen, J. An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method. Langmuir 2014, 30, 10481–10486. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; He, J.; Yao, L.; Zhang, Y.; Li, J. Rational design and construction of well-organized macro-mesoporous SiO2/TiO2 Nanostructure toward robust high-performance self-cleaning antireflective thin films. ACS Appl. Mater. Interfaces 2017, 9, 17466–17475. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Lan, P.; Zhang, X.; Xu, W.; Tan, R.; Song, W.; Choy, K.-L. Design, preparation, and durability of TiO2/SiO2 and ZrO2/SiO2 double-layer antireflective coatings in crystalline silicon solar modules. Sol. Energy 2013, 89, 134–142. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, J.; Bi, Y.; Xu, Y.; Zhang, L. Assembly of methylated hollow silica nanospheres toward humidity-resistant antireflective porous films with ultralow refractive indices. J. Porous Mater. 2017, 25, 55–62. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Q.; Ding, R.; Lv, H.; Yan, H.; Yuan, X.; Xu, Y. Contamination-resistant silica antireflective coating with closed ordered mesopores. Phys. Chem. Chem. Phys. 2014, 16, 16684–16693. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Zheng, J.; Zheng, Y.; Yan, L.; Jiang, B.; Yang, W.; Chen, H.; Zhang, X. Surface modification of Sol-Gel silica antireflective coatings by F-PMHS: A simple method for improvement of amphiphobicity. Coatings 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, K.; Xia, B.; Yang, B.; Yan, L.; He, M.; Yan, H.; Jiang, B. Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol–gel technique. RSC Adv. 2017, 7, 14660–14668. [Google Scholar] [CrossRef] [Green Version]
- Floch, H.G.; Belleville, P.F. Optical thin films from the sol-gel process. Proc. SPIE 1994, 2253, 764–790. [Google Scholar]
- Hajji, P.; David, L.; Gerard, J.F.; Pascault, J.P.; Vigier, G. Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 3172–3187. [Google Scholar] [CrossRef]
- Liang, L.P.; Xu, Y.; Zhang, L.; Sheng, Y.G.; Wu, D.; Sun, Y.H. Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films. J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 1066–1074. [Google Scholar] [CrossRef]
- Sheng, Y.; Liang, L.; Xu, Y.; Wu, D.; Sun, Y. Low-temperature deposition of the high-performance anatase-titania optical films via a modified sol–gel route. Opt. Mater. 2008, 30, 1310–1315. [Google Scholar] [CrossRef]
- Shimizu, W.; Nakamura, S.; Sato, T.; Murakami, Y. Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol-gel technique with a hydrazine monohydrochloride catalyst. Langmuir 2012, 28, 12245–12255. [Google Scholar] [CrossRef]
- Louis, B.; Krins, N.; Faustini, M.; Grosso, D. Understanding Crystallization of anatase into binary SiO2/TiO2 Sol−Gel optical thin films: An in situ thermal ellipsometry analysis. J. Phys. Chem. C 2011, 115, 3115–3122. [Google Scholar] [CrossRef]
- Rantala, J.T.; Kärkkäinen, A.H.O. Optical properties of spin-on deposited low temperature titanium oxide thin films. Opt. Express 2003, 11, 1406–1410. [Google Scholar] [CrossRef]
- Yakovlev, A.V.; Milichko, V.A.; Vinogradov, V.V.; Vinogradov, A.V. Inkjet Color printing by interference nanostructures. ACS Nano 2016, 10, 3078–3086. [Google Scholar] [CrossRef]
- Liang, L.; Xu, Y.; Zhang, L.; Wu, D.; Sun, Y. Polyvinylpyrrolidone/ZrO2-based sol–gel films applied in highly reflective mirrors for inertial confinement fusion. J. Sol-Gel Sci. Technol. 2008, 47, 173–181. [Google Scholar] [CrossRef]
- Tikhonravov, A.V.; Trubetskov, M.K.; Amotchkina, T.V.; DeBell, G.; Pervak, V.; Sytchkova, A.K.; Grilli, M.L.; Ristau, D. Optical parameters of oxide films typically used in optical coating production. Appl. Opt. 2011, 50, C75–C85. [Google Scholar] [CrossRef]
- Lazarova, K.; Vasileva, M.; Marinov, G.; Babeva, T. Optical characterization of sol–gel derived Nb2O5 thin films. Opt. Laser Technol. 2014, 58, 114–118. [Google Scholar] [CrossRef]
- Georgiev, R.; Georgieva, B.; Vasileva, M.; Ivanov, P.; Babeva, T. Optical properties of sol-gel Nb2O5 films with tunable porosity for sensing applications. Adv. Condens. Matter Phys. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tao, J.; Jiang, J.; Zhang, J.; Yang, J.; Chen, S.; Chu, J. Low temperature solution deposited niobium oxide films as efficient electron transport layer for planar perovskite solar cell. Sol. Energy Mater. Sol. Cells 2018, 188, 66–72. [Google Scholar] [CrossRef]
- Li, D.; Wan, D.; Zhu, X.; Wang, Y.; Han, Z.; Han, S.; Shan, Y.; Huang, F. Broadband antireflection TiO2–SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se 2 solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 505–512. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B.; Jiang, B. Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells 2013, 111, 160–164. [Google Scholar] [CrossRef]
- Zhao, W.P.; Jia, H.B.; Wang, Y.; Wang, Q.; Wu, H.N.; Wang, B. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO2 and SiO2-TiO2 hybrid materials. Appl. Opt. 2019, 58, 2385–2392. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Cheng, R.; Zhai, P.; Lee, H.; Chang, Y.-H.; Feng, S.-P. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells. Electrochim. Acta 2017, 236, 131–139. [Google Scholar] [CrossRef]
- Grosso, D.; Cagnol, F.; Soler-Illia, G.J.D.A.A.; Crepaldi, E.L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 2004, 14, 309–322. [Google Scholar] [CrossRef]
- Poelman, D.; Smet, P.F. Methods for the determination of the optical constants of thin films from single transmission measurements: A critical review. J. Phys. D Appl. Phys. 2003, 36, 1850–1857. [Google Scholar] [CrossRef]
- Jia, H.B.; Sun, J.H.; Xu, Y.; Wu, D. Determination of thickness and optical constants of solgel derived polyvinylpyrrolidone/ZrO2 films from transmission spectra using different dispersion models. Appl. Opt. 2012, 51, 6937–6944. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Li, S.; Jiang, C.; Ji, Y.; Chen, D. Study on the composite dispersion model of optical constants of metal-oxide films in the range from ultraviolet to near infrared. Optik 2018, 168, 892–900. [Google Scholar] [CrossRef]
- Ferlauto, A.S.; Ferreira, G.M.; Pearce, J.M.; Wronski, C.R.; Collins, R.W.; Deng, X.M.; Ganguly, G. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 2002, 92, 2424–2436. [Google Scholar] [CrossRef] [Green Version]
- Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Beaucage, G. Combined small-angle scattering for characterization of hierarchically structured polymer systems over nano-to-micron meter. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2012; Volume 2, pp. 399–409. [Google Scholar]
- Trabelsi, S.; Janke, A.; Hässler, R.; Zafeiropoulos, N.E.; Fornasieri, G.; Bocchini, S.; Rozes, L.; Stamm, M.; Gérard, J.-F.; Sanchez, C. Novel Organo-functional titanium−oxo-cluster-based hybrid materials with enhanced thermomechanical and thermal properties. Macromolecules 2005, 38, 6068–6078. [Google Scholar] [CrossRef]
- Li, Y.-C.; Chen, K.-B.; Chen, H.-L.; Hsu, C.-S.; Tsao, C.-S.; Chen, J.-H.; Chen, S.-A. fractal aggregates of conjugated polymer in solution state. Langmuir 2006, 22, 11009–11015. [Google Scholar] [CrossRef] [PubMed]
- Kogler, F.R.; Koch, T.; Peterlik, H.; Seidler, S.; Schubert, U. Mechanical, thermomechanical, and thermal properties of polystyrene crosslinked with a multifunctional zirconium oxo cluster. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 2215–2231. [Google Scholar] [CrossRef]
- Fang, Q.; Meier, M.; Yu, J.J.; Wang, Z.M.; Zhang, J.Y.; Wu, J.X.; Kenyon, A.; Hoffmann, P.; Boyd, I.W. FTIR and XPS investigation of Er-doped SiO2-TiO2 films. Mater. Sci. Eng. B 2003, 105, 209–213. [Google Scholar] [CrossRef]
- Catauro, M.; Tranquillo, E.; Risoluti, R.; Vecchio Ciprioti, S. Sol-Gel synthesis, spectroscopic and thermal behavior study of SiO2/PEG composites containing different amount of chlorogenic acid. Polymers 2018, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Kochkar, H.; Figueras, F. Synthesis of hydrophobic TiO2–SiO2 mixed oxides for the epoxidation of cyclohexene. J. Catal. 1997, 171, 420–430. [Google Scholar] [CrossRef]
- Lin, C.-L.; Yeh, M.-Y.; Chen, C.-H.; Sudhakar, S.; Luo, S.-J.; Hsu, Y.-C.; Huang, C.-Y.; Ho, K.-C.; Luh, T.-Y. Silica−titania-based organic−inorganic hybrid materials for photovoltaic applications. Chem. Mater. 2006, 18, 4157–4162. [Google Scholar] [CrossRef]
- Kim, W.B.; Choi, S.H.; Lee, J.S. Quantitative analysis of Ti-O-Si and Ti-O-Ti bonds in Ti-Si binary oxides by the linear combination of XANES. J. Phys. Chem. B 2000, 104, 8670–8678. [Google Scholar] [CrossRef]
- Bhachu, D.S.; Waugh, M.R.; Zeissler, K.; Branford, W.R.; Parkin, I.P. Textured fluorine-doped tin dioxide films formed by chemical vapour deposition. Chemistry 2011, 17, 11613–11621. [Google Scholar] [CrossRef] [PubMed]
- Tikhonravov, A.V.; Trubetskov, M.K.; Tikhonravov, A.A.; Duparre, A. Effects of interface roughness on the spectral properties of thin films and multilayers. Appl. Opt. 2003, 42, 5140–5148. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, X.; Zhang, Y.; Li, Y.; Zheng, W.; Jiang, B. Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. J. Sol-Gel Sci. Technol. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Sánchez-García, J.Á.; Machado, M.; Brizuela, M.; Zubillaga, O.; Tercjak, A. Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application. Sol. Energy Mater. Sol. Cells 2018, 186, 154–164. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J. A review of contamination-resistant antireflective sol–gel coatings. J. Sol-Gel Sci. Technol. 2012, 61, 206–212. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.; Zhang, C.; Ding, R.; Xu, Y. Effect of post-treatment on ordered mesoporous silica antireflective coating. RSC Adv. 2014, 4, 50873–50881. [Google Scholar] [CrossRef]
Precursor Solution | Rg1 [nm] | P1 | Rg2 [nm] | P2 | n550 | k450 | f |
---|---|---|---|---|---|---|---|
Nb2O5 | 15.8 | 2.68 | – | – | 2.072 | 2.95 × 10−7 | – |
T30S70 | 13.0 | 3.35 | 9.2 | 1.22 | 1.584 | 4.20 × 10−5 | 0.01107 |
T33S67 | 16.1 | 3.00 | 7.9 | 1.25 | 1.633 | 1.69 × 10−5 | 0.01090 |
T36S64 | 12.8 | 2.91 | 9.6 | 1.46 | 1.646 | 2.00 × 10−5 | 0.01094 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Jia, H.; Wang, C.; Zhao, W.; Wang, Y.; Yang, C.; Wu, H.; Zhu, J.; Wang, B.; Wang, Q. Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method. Coatings 2020, 10, 737. https://doi.org/10.3390/coatings10080737
Xu S, Jia H, Wang C, Zhao W, Wang Y, Yang C, Wu H, Zhu J, Wang B, Wang Q. Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method. Coatings. 2020; 10(8):737. https://doi.org/10.3390/coatings10080737
Chicago/Turabian StyleXu, Siyuan, Hongbao Jia, Chunyang Wang, Wenping Zhao, Ying Wang, Chunming Yang, Henan Wu, Jiang Zhu, Biao Wang, and Qian Wang. 2020. "Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method" Coatings 10, no. 8: 737. https://doi.org/10.3390/coatings10080737
APA StyleXu, S., Jia, H., Wang, C., Zhao, W., Wang, Y., Yang, C., Wu, H., Zhu, J., Wang, B., & Wang, Q. (2020). Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method. Coatings, 10(8), 737. https://doi.org/10.3390/coatings10080737