New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations
Abstract
:1. Introduction
2. Experimental Sections
2.1. Synthesis of Compounds
2.2. Materials and Solution
2.3. Weight Loss and Electrochemical Measurements
2.4. Theoretical Evaluation
2.4.1. DFT Details
2.4.2. Local Reactivity: FUKUI Functions
2.4.3. Molecular Dynamic Simulations
2.4.4. Radial Distribution Function (RDF)
2.5. SEM Analysis
3. Results and Discussion
3.1. Weight Loss Tests: Influence of Concentration and Temperature on Inhibition Efficiency
3.2. Potentiodynamic Polarization Curves
3.3. EIS Measurements
3.3.1. Concentration Effect
3.3.2. Immersion Time Effect
3.4. Adsorption Isotherm
3.5. Surface Analysis
3.6. DFT Calculations
3.6.1. Global Reactivity Descriptors for Neutral and Protonated Inhibitors
3.6.2. Local Reactivity: FUKUI Functions
3.7. Molecular Dynamics (MD) Modeling
3.7.1. Optimized Adsorption Configuration of Neutral and Protonated Quinoxaline Derivatives
3.7.2. Temperature Effect on Interaction and Binding Energies
3.8. Radial Distribution Function (RDF) Analysis
3.9. Protection Mechanism
3.10. Comparison with Other Quinoxaline Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bentiss, F.; Lagrenee, M.; Traisnel, M.; Hornez, J. The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corros. Sci. 1999, 41, 789–803. [Google Scholar] [CrossRef]
- Koch, G. Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–30. [Google Scholar]
- Sayed, A.R.; Saleh, M.M.; Al-Omair, M.A.; Abd Al-Lateef, H.M. Efficient route synthesis of new polythiazoles and their inhibition characteristics of mild-steel corrosion in acidic chloride medium. J. Mol. Struct. 2019, 1184, 452–461. [Google Scholar] [CrossRef]
- Heakal, F.E.-T.; Elkholy, A.E. Gemini surfactants as corrosion inhibitors for carbon steel. J. Mol. Liq. 2017, 230, 395–407. [Google Scholar] [CrossRef]
- Saji, V.S.; Umoren, S.A. Corrosion Inhibitors in the Oil and Gas Industry; Wiley Online Library: Newark, NJ, USA, 2020; ISBN 3-527-34618-X. [Google Scholar]
- Gutiérrez, E.; Rodríguez, J.A.; Cruz-Borbolla, J.; Alvarado-Rodríguez, J.G.; Thangarasu, P. Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives. Corros. Sci. 2016, 108, 23–35. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Wang, L. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid. Appl. Surf. Sci. 2019, 492, 228–238. [Google Scholar] [CrossRef]
- Revie, R.W. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering; John Wiley & Sons: Newark, NJ, USA, 2008; ISBN 0-470-27725-4. [Google Scholar]
- Obot, I.; Obi-Egbedi, N. Indeno-1-one [2, 3-b] quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5 M H2SO4 solution. Mater. Chem. Phys. 2010, 122, 325–328. [Google Scholar] [CrossRef]
- El Ouali, I.; Hammouti, B.; Aouniti, A.; Ramli, Y.; Azougagh, M.; Essassi, E.; Bouachrine, M. Thermodynamic characterisation of steel corrosion in HCl in the presence of 2-phenylthieno (3, 2-b) quinoxaline. J. Mater. Environ. Sci. 2010, 1, 1–8. [Google Scholar]
- Zarrouk, A.; Dafali, A.; Hammouti, B.; Zarrok, H.; Boukhris, S.; Zertoubi, M. Synthesis, characterization and comparative study of functionalized quinoxaline derivatives towards corrosion of copper in nitric acid medium. Int. J. Electrochem. Sci. 2010, 5, 46–55. [Google Scholar]
- Fu, J.; Zang, H.; Wang, Y.; Li, S.; Chen, T.; Liu, X. Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res. 2012, 51, 6377–6386. [Google Scholar] [CrossRef]
- Rbaa, M.; Abousalem, A.S.; Rouifi, Z.; Benkaddour, R.; Dohare, P.; Lakhrissi, M.; Warad, I.; Lakhrissi, B.; Zarrouk, A. Synthesis, antibacterial study and corrosion inhibition potential of newly synthesis oxathiolan and triazole derivatives of 8-hydroxyquinoline: Experimental and theoretical approach. Surf. Interfaces 2020, 19, 100468. [Google Scholar] [CrossRef]
- El Faydy, M.; Lakhrissi, B.; Jama, C.; Zarrouk, A.; Olasunkanmi, L.O.; Ebenso, E.E.; Bentiss, F. Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment. J. Mater. Res. Technol. 2020, 9, 727–748. [Google Scholar] [CrossRef]
- Rbaa, M.; Lgaz, H.; El Kacimi, Y.; Lakhrissi, B.; Bentiss, F.; Zarrouk, A. Synthesis, characterization and corrosion inhibition studies of novel 8-hydroxyquinoline derivatives on the acidic corrosion of mild steel: Experimental and computational studies. Mater. Discov. 2018, 12, 43–54. [Google Scholar] [CrossRef]
- Obot, I.B.; Ankah, N.K.; Sorour, A.A.; Gasem, Z.M.; Haruna, K. 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain. Mater. Technol. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Yin, X.; Yang, W.; Chen, Y. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corros. Sci. 2013, 74, 206–213. [Google Scholar] [CrossRef]
- Dutta, A.; Saha, S.K.; Adhikari, U.; Banerjee, P.; Sukul, D. Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1M HCl solution: A combined experimental and theoretical approach. Corros. Sci. 2017, 123, 256–266. [Google Scholar] [CrossRef]
- Scully, J.; Baboian, R. Standard Practice for Laboratory Immersion Corrosion Testing of Metals; ASTM Phila PA PA 19428; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 1995. [Google Scholar]
- Salarvand, Z.; Amirnasr, M.; Talebian, M.; Raeissi, K.; Meghdadi, S. Enhanced corrosion resistance of mild steel in 1M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros. Sci. 2017, 114, 133–145. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 09, Revision A. 01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kovačević, N.; Kokalj, A. Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness. Corros. Sci. 2011, 53, 909–921. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Hehre, W.J. Ab Initio Molecular Orbital Theory; Wiley-Interscience: Newark, NJ, USA, 1986. [Google Scholar]
- Koopmans, T. The classification of wave functions and eigen-values to the single electrons of an atom. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Kokalj, A. Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim. Acta 2010, 56, 745–755. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Quraishi, M.A.; Kaya, S. Theoretically and experimentally exploring the corrosion inhibition of N80 steel by pyrazol derivatives in simulated acidizing environment. J. Mol. Struct. 2020, 1206, 127685. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Obot, I.; Macdonald, D.; Gasem, Z. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Kokalj, A. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem. Phys. 2012, 393, 1–12. [Google Scholar] [CrossRef]
- Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 2017, 406, 301–306. [Google Scholar] [CrossRef]
- Chaouiki, A.; Lgaz, H.; Salghi, R.; Chafiq, M.; Oudda, H.; Bhat, K.; Cretescu, I.; Ali, I.; Marzouki, R.; Chung, I. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. Colloids Surf. Physicochem. Eng. Asp. 2020, 588, 124366. [Google Scholar] [CrossRef]
- Lgaz, H.; Zehra, S.; Albayati, M.; Toumiat, K.; El Aoufir, Y.; Chaouiki, A.; Salghi, R.; Ali, I.H.; Khan, M.; Chung, I. Corrosion Inhibition of Mild Steel in 1.0 M HCl by two Hydrazone Derivatives. Int. J. Electrochem. Sci. 2019, 14, 6667–6681. [Google Scholar] [CrossRef]
- Chaouiki, A.; Lgaz, H.; Zehra, S.; Salghi, R.; Chung, I.-M.; El Aoufir, Y.; Bhat, K.S.; Ali, I.H.; Gaonkar, S.L.; Khan, M.I. Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl: Electrochemical, DFT, and molecular dynamic simulation studies. J. Adhes. Sci. Technol. 2019, 33, 921–944. [Google Scholar] [CrossRef]
- Lgaz, H.; Saha, S.K.; Chaouiki, A.; Bhat, K.S.; Salghi, R.; Banerjee, P.; Ali, I.H.; Khan, M.I.; Chung, I.-M. Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies. Constr. Build. Mater. 2020, 233, 117320. [Google Scholar] [CrossRef]
- Chugh, B.; Singh, A.K.; Chaouiki, A.; Salghi, R.; Thakur, S.; Pani, B. A comprehensive study about anti-corrosion behaviour of pyrazine carbohydrazide: Gravimetric, electrochemical, surface and theoretical study. J. Mol. Liq. 2020, 299, 112160. [Google Scholar] [CrossRef]
- Hansen, J.-P.; McDonald, I.R. Theory of Simple Liquids: With Applications to Soft Matter; Academic Press: Cambridge, MA, USA, 2013; ISBN 0-12-387033-X. [Google Scholar]
- Ouici, H.; Tourabi, M.; Benali, O.; Selles, C.; Jama, C.; Zarrouk, A.; Bentiss, F. Adsorption and corrosion inhibition properties of 5-amino 1, 3, 4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: Thermodynamic, surface and electrochemical studies. J. Electroanal. Chem. 2017, 803, 125–134. [Google Scholar] [CrossRef]
- Gopiraman, M.; Selvakumaran, N.; Kesavan, D.; Kim, I.S.; Karvembu, R. Chemical and physical interactions of 1-benzoyl-3, 3-disubstituted thiourea derivatives on mild steel surface: Corrosion inhibition in acidic media. Ind. Eng. Chem. Res. 2012, 51, 7910–7922. [Google Scholar] [CrossRef]
- Ansari, K.; Quraishi, M.; Singh, A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement 2015, 76, 136–147. [Google Scholar] [CrossRef]
- Elkholy, A.E.; Heakal, F.E.-T. Electrochemical measurements and semi-empirical calculations for understanding adsorption of novel cationic Gemini surfactant on carbon steel in H2SO4 solution. J. Mol. Struct. 2018, 1156, 473–482. [Google Scholar] [CrossRef]
- Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E. Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4, 5-dihydropyrazol-3-yl] phenyl} methanesulfonamides on mild steel in 1 M HCl: Experimental and theoretical studies. RSC Adv. 2016, 6, 86782–86797. [Google Scholar] [CrossRef]
- Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.; Quraishi, M. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J. Phys. Chem. C 2016, 120, 3408–3419. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Xie, X. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution. Corros. Sci. 2014, 81, 162–175. [Google Scholar] [CrossRef]
- Shukla, S.K.; Quraishi, M.A. The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2010, 52, 314–321. [Google Scholar] [CrossRef]
- Chaouiki, A.; Lgaz, H.; Salghi, R.; Gaonkar, S.L.; Bhat, K.S.; Jodeh, S.; Toumiat, K.; Oudda, H. New Benzohydrazide Derivative as Corrosion Inhibitor for Carbon Steel in a 1.0 M HCl Solution: Electrochemical, DFT and Monte Carlo Simulation Studies. Port. Electrochim. Acta 2019, 37, 147–165. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, C.; Lgaz, H.; Srivastava, V.; Quraishi, M.; Ebenso, E.E. Synthesis, characterization and corrosion inhibition studies of N-phenyl-benzamides on the acidic corrosion of mild steel: Experimental and computational studies. J. Mol. Liq. 2018, 251, 317–332. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, S.; Purkait, T.; Olasunkanmi, L.; Bahadur, I.; Ebenso, E. Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. J. Mol. Liq. 2016, 213, 122–138. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Bahadur, I.; Lgaz, H.; Quraishi, M.; Haque, J.; Sherif, E.-S.M.; Ebenso, E.E. Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium. J. Mol. Liq. 2019, 273, 1–15. [Google Scholar] [CrossRef]
- Lukovits, I.; Kalman, E.; Zucchi, F. Corrosion inhibitors—Correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-W.; Liu, Z.; Han, G.-C.; Li, W.; Liu, J.; Chen, Z. Molecular dynamics simulation of inhibition mechanism of 3, 5-dibromo salicylaldehyde Schiff’s base. Comput. Theor. Chem. 2015, 1063, 50–62. [Google Scholar] [CrossRef]
- Lgaz, H.; Chung, I.-M.; Albayati, M.R.; Chaouiki, A.; Salghi, R.; Mohamed, S.K. Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: An experimental and computational study. Arab. J. Chem. 2020, 13, 2934–2954. [Google Scholar] [CrossRef]
- Momany, F.A.; Willett, J.; Schnupf, U. Molecular dynamics simulations of a cyclic-DP-240 amylose fragment in a periodic cell: Glass transition temperature and water diffusion. Carbohydr. Polym. 2009, 78, 978–986. [Google Scholar] [CrossRef]
- Chaouiki, A.; Lgaz, H.; Chung, I.-M.; Ali, I.; Gaonkar, S.L.; Bhat, K.; Salghi, R.; Oudda, H.; Khan, M. Understanding corrosion inhibition of mild steel in acid medium by new benzonitriles: Insights from experimental and computational studies. J. Mol. Liq. 2018, 266, 603–616. [Google Scholar] [CrossRef]
- Saranya, J.; Sounthari, P.; Parameswari, K.; Chitra, S. Acenaphtho [1, 2-b] quinoxaline and acenaphtho [1, 2-b] pyrazine as corrosion inhibitors for mild steel in acid medium. Measurement 2016, 77, 175–186. [Google Scholar] [CrossRef]
- El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.; Touhami, M.E. DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci. 2013, 68, 223–230. [Google Scholar] [CrossRef]
- Tayebi, H.; Bourazmi, H.; Himmi, B.; El Assyry, A.; Ramli, Y.; Zarrouk, A.; Geunbour, A.; Hammouti, B. Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Pharma. Chem. 2014, 6, 220–234. [Google Scholar]
- El Aoufir, Y.; Lgaz, H.; Bourazmi, H.; Kerroum, Y.; Ramli, Y.; Guenbour, A.; Salghi, R.; El-Hajjaji, F.; Hammouti, B.; Oudda, H. Quinoxaline derivatives as corrosion inhibitors of carbon steel in hydrochloridric acid media: Electrochemical, DFT and Monte Carlo simulations studies. J. Mater. Environ. Sci. 2016, 7, 4330–4347. [Google Scholar]
- El-Hajjaji, F.; Belkhmima, R.; Zerga, B.; Sfaira, M.; Taleb, M.; Touhami, M.E.; Hammouti, B.; Al-Deyab, S.; Ebenso, E. Temperature performance of a thione quinoxaline compound as mild steel corrosion inhibitor in hydrochloric acid medium. Int. J. Electrochem. Sci. 2014, 9, 4721–4731. [Google Scholar]
Inhibitor | Concentration (mol/L) | −Ecorr (mV vs. SCE) | −βc (mV dec−1) | −βc (mV dec−1) | icorr (μA cm−2) | (%) |
---|---|---|---|---|---|---|
1.0 | 496 ± 0.4 | 150 ± 3.5 | 92 ± 5.7 | 564 ± 2.3 | - | |
Q1 | 1 × 10−4 | 498 ± 0.9 | 143 ± 5.4 | 101 ± 6.4 | 112 ± 2.5 | 80 |
5 × 10−4 | 506 ± 0.7 | 146 ± 4.3 | 98 ± 2.7 | 78 ± 3.2 | 86 | |
1 × 10−3 | 500 ± 0.4 | 140 ± 3.1 | 99 ± 4.9 | 56 ± 1.8 | 90 | |
5 × 10−3 | 513 ± 0.8 | 168 ± 3.2 | 84 ± 5.4 | 25 ± 2.1 | 95 | |
Q2 | 1 × 10−4 | 491 ± 1.7 | 163 ± 5.7 | 93 ± 1.5 | 169 ± 3.3 | 70 |
5 × 10−4 | 487 ± 2.2 | 175 ± 6.6 | 75 ± 2.8 | 118 ± 4.4 | 79 | |
1 × 10−3 | 480 ± 0.9 | 166 ± 4.1 | 73 ± 6.8 | 95 ± 3.2 | 83 | |
5 × 10−3 | 483 ± 2.3 | 140 ± 5.7 | 66 ± 5.3 | 62 ± 2.1 | 89 |
Inhibitor | Concentration | Rp | Q × 10−4 | Goodness of fit (χ2) | (%) | ||
---|---|---|---|---|---|---|---|
1.0 | 29 ± 1.5 | 0.89 ± 0.005 | 1.761 ± 0.0025 | 92 | 0.33 | - | |
160 ± 1.7 | 0.80 ± 0.007 | 0.7319 ± 0.0047 | 24 | 2.85 | 81 | ||
Q1 | 229 ± 1.3 | 0.79 ± 0.009 | 0.6171 ± 0.0076 | 19 | 3.29 | 87 | |
389 ± 1.8 | 0.81 ± 0.005 | 0.4092 ± 0.0077 | 15 | 2.33 | 92 | ||
954 ± 1.4 | 0.82 ± 0.006 | 0.2478 ± 0.0066 | 10 | 2.52 | 96 | ||
Q2 | 105 ± 1.8 | 0.79 ± 0.001 | 1.0115 ± 0.0035 | 30 | 3.64 | 72 | |
140 ± 1.9 | 0.81 ± 0.004 | 0.7055 ± 0.0045 | 24 | 3.47 | 79 | ||
208 ± 1.4 | 0.79 ± 0.007 | 0.6102 ± 0.0094 | 19 | 4.26 | 85 | ||
267 ± 1.6 | 0.80 ± 0.003 | 0.5144 ± 0.0024 | 17 | 3.01 | 89 |
Inhibitor | Time | Goodness of fit (χ2) | (%) | ||||
---|---|---|---|---|---|---|---|
29 ± 1.5 | 0.89 ± 0.005 | 1.7610 ± 0.0025 | 92 | 0.33 | - | ||
23 ± 2.5 | 0.84 ± 0.007 | 2.5114 ± 0.0037 | 94 | 2.45 | - | ||
18 ± 1.7 | 0.83 ± 0.004 | 2.9866 ± 0.0084 | 102 | 3.24 | - | ||
12 ± 2.9 | 0.88 ± 0.003 | 3.0891 ± 0.0031 | 144 | 1.14 | - | ||
Q1 | 954 ± 1.4 | 0.82 ± 0.006 | 0.2478 ± 0.0066 | 10 | 1.79 | 96 | |
537 ± 1.8 | 0.83 ± 0.007 | 0.3787 ± 0.0075 | 17 | 2.03 | 95 | ||
395 ± 1.5 | 0.82 ± 0.003 | 0.5176 ± 0.0023 | 22 | 1.28 | 95 | ||
300 ± 2.1 | 0.81 ± 0.005 | 0.6754 ± 0.0078 | 27 | 3.16 | 96 |
Inhibitor | Q1 | Q2 | ||||||
---|---|---|---|---|---|---|---|---|
Temperature | 303 K | 313 K | 323 K | 333 K | 303 K | 313 K | 323 K | 333 K |
Slope | 1.04 | 1.02 | 1.03 | 1.02 | 1.06 | 1.03 | 1.04 | 1.04 |
Kads (M−1) | 26,752 | 20,312 | 18,102 | 18,533 | 14,009 | 14,604 | 13,524 | 12,289 |
(KJ mol−1) | −35.78 | −36.24 | −37.09 | 38.30 | −34.15 | −35.38 | −36.31 | −37.17 |
Parameters → Molecules ↓ | EHOMO (eV) | ELUMO (eV) | IP (eV) | EA (eV) | ΔEgap (eV) | ΔN110 |
---|---|---|---|---|---|---|
Calculations by B3LYP/6-311G++(d,p) for neutral molecules | ||||||
Q1 | −4.842 | −1.778 | 4.842 | 1.778 | 3.064 | 0.492 |
Q2 | −5.092 | −1.218 | 5.092 | 1.218 | 3.874 | 0.429 |
Calculations by B3LYP/6-311G++(d,p) for neutral molecules | ||||||
Q1-H + | −4.919 | −2.180 | 4.919 | 2.180 | 2.739 | 0.463 |
Q2-H + | −5.732 | −2.760 | 5.732 | 2.760 | 2.972 | 0.193 |
System | Einteraction (kJ mol−1) | Ebinding (kJ mol−1) |
---|---|---|
Neutral molecules | ||
Fe (110)/Q1 | −583.121 | 583.121 |
Fe (110)/Q2 | −508.456 | 508.456 |
Protonated molecules | ||
Fe (110)/Q1-H+ | −616.731 | 616.731 |
Fe (110)/Q2-H+ | −601.514 | 601.514 |
Inhibitor/Concentration | Metal/Medium | Inhibition Efficiency (%) | Reference |
---|---|---|---|
AP/10 mM | Mild steel/1 M H2SO4 | 86 | [58] |
AQ/10 mM | Mild steel/1 M H2SO4 | 90 | [58] |
Cl–QS | Mild steel/1 M HCl | 75 | [59] |
QIN3/10−3 M | C-steel/1.0 M HCl | 95 | [60] |
SMQ/10−3 M | C-steel/1.0 M HCl | 90 | [61] |
TMQ/10−3 M | C- steel/1.0 M HCl | 93 | [61] |
Pr-N-Q = S/10−3 M | Mild steel/1 M HCl | 95 | [62] |
Q2/5 × 10−3 M | Mild steel/1 M HCl | 90 | Present work |
Q1/5 × 10−3 M | Mild steel/1 M HCl | 96 | Present work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaouiki, A.; Chafiq, M.; Rbaa, M.; Lgaz, H.; Salghi, R.; Lakhrissi, B.; Ali, I.H.; Masroor, S.; Cho, Y. New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations. Coatings 2020, 10, 811. https://doi.org/10.3390/coatings10090811
Chaouiki A, Chafiq M, Rbaa M, Lgaz H, Salghi R, Lakhrissi B, Ali IH, Masroor S, Cho Y. New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations. Coatings. 2020; 10(9):811. https://doi.org/10.3390/coatings10090811
Chicago/Turabian StyleChaouiki, Abdelkarim, Maryam Chafiq, Mohamed Rbaa, Hassane Lgaz, Rachid Salghi, Brahim Lakhrissi, Ismat H. Ali, Sheerin Masroor, and Youngjae Cho. 2020. "New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations" Coatings 10, no. 9: 811. https://doi.org/10.3390/coatings10090811
APA StyleChaouiki, A., Chafiq, M., Rbaa, M., Lgaz, H., Salghi, R., Lakhrissi, B., Ali, I. H., Masroor, S., & Cho, Y. (2020). New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations. Coatings, 10(9), 811. https://doi.org/10.3390/coatings10090811