Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Devices
2.2. Preparation of Superhydrophobic and Antibacterial Fabric
2.3. Characterizations
2.4. Antimicrobial Test
2.5. Antibacterial Adhesion Test
3. Results and Discussion
3.1. Wettability, Surface Morphology, and Chemistry Analysis
3.2. Durability of the PET-PDMS@ZnO Fabric
3.3. Antibacterial Property
3.4. Antibacterial Adhesion Property
3.5. Applications of the PET-PDMS@ZnO Fabric
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, L.Y.; Hong, F.; Liu, J.H.; Zhang, G.Z.; Wu, C. Intergrated design and study of marine antifouling polymer materials. Acta Polym. Sin. 2012, 1, 1–13. [Google Scholar] [CrossRef]
- Crick, C.R.; Ismail, S.; Pratten, J.; Parkin, I.P. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Film. 2011, 519, 3722–3727. [Google Scholar] [CrossRef]
- Cano, S.; Carril, M. Recent Developments in the design of non-biofouling coatings for nanoparticle and surfaces. Int. J. Mol. Sci. 2020, 21, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stallard, C.P.; McDonnell, K.A.; Onayemi, O.D.; OYPERL, J.P.; Dowling, D.P. Evaluation of protein adsorption on atmospheric plasma seposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases 2012, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen-Tri, P.; Altiparmak, F.; Nguyen, N.; Tuduri, L.; Ouellet-Plamondon, C.M.; Prud’homme, R.E. Robust superhydrophobic cotton fibers prepared by simple dip- coating approach using chemical and plasma-etching pretreatments. Acs Omega. 2019, 4, 7829–7837. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, T.; Saito, N.; Takai, O. Correlation of cell adhesive behaviors on superhydrophobic superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry. Langmuir 2010, 26, 8147–8154. [Google Scholar] [CrossRef]
- Bao, Q.; Nishimura, N.; Kamata, H.; Furue, K.; Terada, A. Antibacterial and anti-biofilm efficacy of fluoropolymer coating by a 2,3,5,6-tetrafluoro-p-phenylenedimethanol structure. Colloid. Surf. B 2016, 151, 363. [Google Scholar] [CrossRef]
- Ellinas, K.; Kefallinou, D.; Stamatakis, K.; Gogolides, E.; Tserepi, A. Is there a threshold in the antibacterial action of superhydrophobic surfaces? ACS Appl. Mater. Interfaces 2017, 9, 39781–39789. [Google Scholar] [CrossRef]
- Liu, T.; Yin, B.; He, T.; Guo, N.; Dong, L.; Yin, Y. Complementary effects of nanosilver and superhydrophobic coatings on the prevention of marine bacterial adhesion. ACS Appl. Mater. Interfaces 2012, 4, 4683. [Google Scholar] [CrossRef]
- Tian, X.; Verho, T.; Ras, R. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142. [Google Scholar] [CrossRef]
- Wu, M.; Ma, B.; Pan, T.; Chen, S.; Sun, J. Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv. Funct. Mater. 2016, 26, 569–576. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y. One step approach to the growth of ZnO nano-/microrods on cellulose toward its durable superhydrophobicity. Adv. Mater. Interfaces 2017, 4, 1700550. [Google Scholar] [CrossRef]
- Shao, L.; Liu, H.; Zeng, W.P.; Zhou, C.Y.; Dan, L. Immobilized and photocatalytic performances of PDMS-SiO2-chitosan@TiO2 composites on pumice under simulated sunlight irradiation. Appl. Surf. Sci. 2019, 478, 1017–1026. [Google Scholar] [CrossRef]
- Wang, M.K.; Zhang, Z.Z.; Wang, Y.L.; Zhao, X.; Yang, M.M.; Men, X.H. Superwetting fabrics towards multifunctional applications: Oil/water separation, anti-fouling and flame-retardance. Appl. Surf. Sci. 2020, 508, 145265. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Zerafat, M.M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti- adhesion and self-cleaning properties. Appl. Surf. Sci. 2019, 464, 458–471. [Google Scholar] [CrossRef]
- Cheng, D.S.; He, M.T.; Li, W.B.; Wu, J.H.; Ran, J.H.; Cai, G.M.; Wang, X. Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor. Appl. Surf. Sci. 2019, 467, 534–542. [Google Scholar] [CrossRef]
- Lin, D.M.; Zeng, X.R.; Li, H.Q.; Lai, X.J. Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly. Cellulose 2018, 25, 3135–3149. [Google Scholar] [CrossRef]
- Xu, L.Y.; Guo, Y.; Bai, G.H. Fluorine-free and wearing comfortable superhydrophobic fabrics from particle-free polymer coatings. Prog. Org. Coat. 2020, 146, 105727. [Google Scholar] [CrossRef]
- Xu, L.Y.; Deng, J.W.; Guo, Y.; Wang, W.; Zhang, R.Y.; Yu, J.Y. Fabrication of superhydrophobic cotton fabric by low-pressure plasma-enhanced chemical vapor deposition. Text. Res. J. 2019, 89, 1853–1862. [Google Scholar] [CrossRef]
- Sun, F.J.; Chen, L.; Sun, W.G. Study on microwave method extraction mugwort pigment and antibacterial performance. Wool Text. J. 2011, 39, 17–19. [Google Scholar]
- Tian, Y.; Liu, X.; Zheng, X.; Wang, L. Antimicrobial properties of flax fibers in the enzyme retting process. Fibres Text. East. Eur. 2016, 24, 15–17. [Google Scholar] [CrossRef]
- Zhang, J.G.; Xu, Z.W.; Mai, W.; Min, C.Y.; Zhou, B.M.; Shan, M.J.; Li, Y.L.; Yang, C.Y.; Wang, Z.; Qian, X.M. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J. Mater. Chem. A 2013, 1, 3101. [Google Scholar] [CrossRef]
- Rau, C.; Kulisch, W. Mechanisms of plasma polymerization of various silico-organic monomer. Thin Solid Film. 1994, 249, 28–37. [Google Scholar] [CrossRef]
- Yazdanshenas, M.; Shateri-Khalilabad, M. One-Step synthesis of superhydrophobic coating on cotton fabric by ultrasound irradiation. Ind. Eng. Chem. Res. 2013, 52, 12846–12854. [Google Scholar] [CrossRef]
- Agarwal, S.; Nekouei, F.; Kargarzadeh, H. Preparation of Nickel hydroxide nanoplates modified activated carbon for Malachite Green removal from solutions: Kinetic, thermodynamic, isotherm and antibacterial studies. Process. Saf. Environ. 2016, 102, 85–97. [Google Scholar]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A. Review on Zinc Oxide Nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Seth, M.; Khan, H.; Jana, S. Hierarchically structured alpha-nickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation. Mater. Chem. Phys. 2020, 249, 123030. [Google Scholar] [CrossRef]
- Li, Y.; Cai, R.; Lu, Y. Selection and use of protective clothing in novel coronavirus pneumonia epidemic. Chin. J. Infect. Cont. 2020, 19, 117–122. [Google Scholar]
Permeabilities | Pristine PET Fabric | PET-PDMS@ZnO Fabric |
---|---|---|
Air permeability (mm/s) | 15.97 | 13.96 |
Water-vapor transmission (g/(m2·d)) | 8726.40 | 8581.15 |
Hydrostatic (KPa) | 0.43 | 3.41 |
Breaking strength (N) | 630.40 | 686.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Guo, Y.; Xu, L.; Chang, X.; Zhang, X.; Xu, G.; Shi, J. Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties. Coatings 2021, 11, 15. https://doi.org/10.3390/coatings11010015
Lai Y, Guo Y, Xu L, Chang X, Zhang X, Xu G, Shi J. Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties. Coatings. 2021; 11(1):15. https://doi.org/10.3390/coatings11010015
Chicago/Turabian StyleLai, Yuling, Ying Guo, Liyun Xu, Xijiang Chang, Xingqun Zhang, Guangbiao Xu, and Jianjun Shi. 2021. "Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties" Coatings 11, no. 1: 15. https://doi.org/10.3390/coatings11010015
APA StyleLai, Y., Guo, Y., Xu, L., Chang, X., Zhang, X., Xu, G., & Shi, J. (2021). Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties. Coatings, 11(1), 15. https://doi.org/10.3390/coatings11010015