Improving Transport Properties of GaN-Based HEMT on Si (111) by Controlling SiH4 Flow Rate of the SiNx Nano-Mask
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Axelsson, O.; Gustafsson, S.; Hjelmgren, H.; Rorsman, N.; Blanck, H.; Splettstoesser, J.; Thorpe, J.; Roedle, T.; Thorsell, M. Application relevant evaluation of trapping effects in AlGaN/GaN HEMTs with Fe-doped buffer. IEEE Trans. Electron Devices 2016, 63, 326–332. [Google Scholar] [CrossRef]
- Hu, A.; Yang, X.; Cheng, J.; Song, C.; Zhang, J.; Feng, Y.; Ji, P.; Xu, F.; Zhang, Y.; Yang, Z.; et al. Vertical leakage induced current degradation and relevant traps with large lattice relaxation in AlGaN/GaN heterostructures on Si. Appl. Phys. Lett. 2018, 112, 032104. [Google Scholar] [CrossRef] [Green Version]
- Wespel, M.; Polyakov, V.M.; Dammann, M.; Reiner, R.; Waltereit, P.; Quay, R.; Mikulla, M.; Ambacher, O. Trapping effects at the drain edge in 600 V GaN-on-Si HEMTs. IEEE Trans. Electron Devices 2015, 63, 598–605. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, C.; Han, S.; Wei, J.; Sheng, K.; Chen, K.J. Impact of substrate bias polarity on buffer-related current collapse in AlGaN/GaN-on-Si power devices. IEEE Trans. Electron Devices 2017, 64, 5048–5056. [Google Scholar] [CrossRef]
- Meneghini, M.; Rossetto, I.; Bisi, D.; Stocco, A.; Chini, A.; Pantellini, A.; Lanzieri, C.; Nanni, A.; Meneghesso, G.; Zanoni, E. Buffer traps in Fe-doped AlGaN/GaN HEMTs: Investigation of the physical properties based on pulsed and transient measurements. IEEE Trans. Electron Devices 2014, 61, 4070–4077. [Google Scholar] [CrossRef]
- Liang, Y.; Jia, L.; He, Z.; Fan, Z.; Zhang, Y.; Yang, F. The study of the contribution of the surface and bulk traps to the dynamic Rdson in AlGaN/GaN HEMT by light illumination. Appl. Phys. Lett. 2016, 109, 182103. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S.; Tang, Z.; Jiang, Q.; Liu, C.; Wang, M.; Shen, B.; Chen, K.J. Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer. Appl. Phys. Lett. 2015, 106, 051605. [Google Scholar] [CrossRef]
- Hua, M.; Lu, Y.; Liu, S.; Liu, C.; Fu, K.; Cai, Y.; Zhang, B.; Chen, K.J. Compatibility of AlN/SiNx passivation with LPCVD-SiNx gate dielectric in GaN-based MIS-HEMT. IEEE Electron Device Lett. 2016, 37, 265–268. [Google Scholar] [CrossRef]
- Lee, H.-P.; Perozek, J.; Rosario, L.D.; Bayram, C. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations. Sci. Rep. 2016, 6, 37588. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Do, Y.-G.; Kang, H.C.; Noh, D.Y.; Park, S.-J. Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 2713–2715. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, X.; Sang, L.; Guo, L.; Hu, A.; Xu, F.; Tang, N.; Wang, X.; Shen, B. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology. Appl. Phys. Lett. 2015, 106, 142106. [Google Scholar] [CrossRef]
- Feltin, E.; Beaumont, B.; Laügt, M.; De Mierry, P.; Vennéguès, P.; Lahrèche, H.; Leroux, M.; Gibart, P. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2001, 79, 3230–3232. [Google Scholar] [CrossRef]
- Selvaraj, S.L.; Suzue, T.; Egawa, T. Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett. 2009, 30, 587–589. [Google Scholar] [CrossRef]
- Sugawara, Y.; Ishikawa, Y.; Watanabe, A.; Miyoshi, M.; Egawa, T. Characterization of dislocations in GaN layer grown on 4-inch Si (111) with AlGaN/AlN strained layer superlattices. Jpn. J. Appl. Phys. 2016, 55, 05FB08. [Google Scholar] [CrossRef]
- Tanaka, S.; Honda, Y.; Sawaki, N.; Hibino, M. Structural characterization of GaN laterally overgrown on a (111)Si substrate. Appl. Phys. Lett. 2001, 79, 955–957. [Google Scholar] [CrossRef]
- Chang, S.; Wei, L.L.; Luong, T.T.; Chang, C.; Chang, L. Threading dislocation reduction in three-dimensionally grown GaN islands on Si (111) substrate with AlN/AlGaN buffer layers. J. Appl. Phys. 2017, 122, 105306. [Google Scholar] [CrossRef]
- Lee, K.J.; Shin, E.H.; Lim, K.Y. Reduction of dislocations in GaN epilayers grown on Si(111) substrate using SixNy inserting layer. Appl. Phys. Lett. 2004, 85, 1502. [Google Scholar] [CrossRef]
- Hertkorn, J.; Lipski, F.; Brückner, P.; Wunderer, T.; Thapa, S.B.; Scholz, F.; Chuvilin, A.; Kaiser, U.; Beer, M.; Zweck, J. Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited masks. J. Cryst. Growth 2008, 310, 4867–4870. [Google Scholar] [CrossRef]
- Dadgar, A.; Poschenrieder, M.; Reiher, A.; Bläsing, J.; Christen, J.; Krtschil, A.; Finger, T.; Hempel, T.; Diez, A.; Krost, A. Reduction of stress at the initial stages of GaN growth on Si(111). Appl. Phys. Lett. 2003, 82, 28–30. [Google Scholar] [CrossRef]
- Cheng, K.; Leys, M.; DeGroote, S.; Germain, M.; Borghs, G. High quality GaN grown on silicon(111) using a SixNy interlayer by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2008, 92, 192111. [Google Scholar] [CrossRef]
- Scholz, F.; Forghani, K.; Klein, M.; Klein, O.; Kaiser, U.; Neuschl, B.; Tischer, I.; Feneberg, M.; Thonke, K.; Lazarev, S.; et al. Studies on defect reduction in AlGaN heterostructures by integrating an in-situ SiN interlayer. Jpn. J. Appl. Phys. 2013, 52, 08JJ07. [Google Scholar] [CrossRef]
- Forghani, K.; Klein, M.; Lipski, F.; Schwaiger, S.; Hertkorn, J.; Leute, R.A.R.; Scholz, F.; Feneberg, M.; Neuschl, B.; Thonke, K.; et al. High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 2011, 315, 216–219. [Google Scholar] [CrossRef]
- Neuschl, B.; Fujan, K.J.; Feneberg, M.; Tischer, I.; Thonke, K.; Forghani, K.; Klein, M.; Scholz, F. Cathodoluminescence and photoluminescence study on AlGaN layers grown with SiNx interlayers. Appl. Phys. Lett. 2010, 97, 192108. [Google Scholar] [CrossRef]
- Zang, K.Y.; Wang, Y.; Wang, L.S.; Chow, S.Y.; Chua, S.J. Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111). J. Appl. Phys. 2007, 101, 093502. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Ou, S.-L.; Horng, R.-H.; Wuu, D.-S. Improved GaN-on-Si epitaxial quality by incorporating various SixNy interlayer structures. J. Cryst. Growth 2014, 399, 27–32. [Google Scholar] [CrossRef]
- Xie, J.; Chevtchenko, S.A.; Özgür, Ü.; Morkoç, H. Defect reduction in GaN epilayers grown by metal-organic chemical vapor deposition with in situ SiNx nanonetwork. Appl. Phys. Lett. 2007, 90, 262112. [Google Scholar] [CrossRef] [Green Version]
- Klein, O.; Biskupek, J.; Forghani, K.; Scholz, F.; Kaiser, U. TEM investigations on growth interrupted samples for the correlation of the dislocation propagation and growth mode variations in AlGaN deposited on SiNx interlayers. J. Cryst. Growth 2011, 324, 63–72. [Google Scholar] [CrossRef]
- Kappers, M.J.; Datta, R.; Oliver, R.A.; Rayment, F.D.G.; Vickers, M.E.; Humphreys, C.J. Threading dislocation reduction in (0001) GaN thin films using SiNx interlayers. J. Cryst. Growth 2007, 300, 70–74. [Google Scholar] [CrossRef]
- Riemann, T.; Hempel, T.; Christen, J.; Veit, P.; Clos, R.; Dadgar, A.; Krost, A.; Haboeck, U.; Hoffmann, A. Optical and structural microanalysis of GaN grown on SiN submonolayers. J. Appl. Phys. 2006, 99, 123518. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Chung, S.J.; Suh, E.-K. Effects of dislocations on the carrier transport and optical properties of GaN films grown with an in-situ SiNx insertion layer. Electron. Mater. Lett. 2012, 8, 141–146. [Google Scholar] [CrossRef]
- Wang, T.Y.; Ou, S.L.; Horng, R.-H.; Wuu, D.-S. Growth evolution of SixNy on the GaN underlayer and its effects on GaN-on-Si (111) heteroepitaxial quality. CrystEngComm 2014, 16, 5724–5731. [Google Scholar] [CrossRef] [Green Version]
- Szymański, T.; Wośko, M.; Wzorek, M.; Paszkiewicz, B.; Paszkiewicz, R. Origin of surface defects and influence of an in situ deposited SiN nanomask on the properties of strained AlGaN/GaN heterostructures grown on Si (111) using metal–organic vapour phase epitaxy. CrystEngComm 2016, 18, 8747–8755. [Google Scholar] [CrossRef]
- Contreras, O.; Ponce, F.A.; Christen, J.; Dadgar, A.; Krost, A. Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si. Appl. Phys. Lett. 2002, 81, 4712–4714. [Google Scholar] [CrossRef]
- Weimann, N.G.; Eastman, L.F.; Doppalapudi, D.; Ng, H.M.; Moustakas, T.D. Scattering of electrons at threading dislocations in GaN. J. Appl. Phys. 1998, 83, 3656–3659. [Google Scholar] [CrossRef]
- Chen, K.X.; Dai, Q.; Lee, W.; Kim, J.K.; Schubert, E.F.; Grandusky, J.; Mendrick, M.; Li, X.; Smart, J.A. Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N. Appl. Phys. Lett. 2008, 93, 192108. [Google Scholar] [CrossRef]
- Krtschil, A.; Dadgar, A.; Krost, A. Decoration effects as origin of dislocation-related charges in gallium nitride layers investigated by scanning surface potential microscopy. Appl. Phys. Lett. 2003, 82, 2263–2265. [Google Scholar] [CrossRef]
- Asgari, A.; Babanejad, S.; Faraone, L. Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN heterostructures. J. Appl. Phys. 2011, 110, 113713. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Han, X.; Yuan, H.; Wang, J.; Guo, Y.; Song, H.; Zheng, G.; Wei, H.; Yang, S.; et al. Dislocation scattering in AlxGa1−xN/GaN heterostructures. Appl. Phys. Lett. 2008, 93, 182111. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Wei, H.; Jiao, C.; Wang, J.; Zhang, H.; Jin, D.-D.; Feng, Y.; Yang, S.; Wang, L.; et al. Scattering due to Schottky barrier height spatial fluctuation on two dimensional electron gas in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2013, 103, 232109. [Google Scholar] [CrossRef]
- Iwata, K.; Narita, T.; Nagao, M.; Tomita, K.; Kataoka, K.; Kachi, T.; Ikarashi, N. Atomic resolution structural analysis of magnesium segregation at a pyramidal inversion domain in a GaN epitaxial layer. Appl. Phys. Express 2019, 12, 031004. [Google Scholar] [CrossRef]
- Duguay, S.; Echeverri, A.; Castro, C.; Latry, O. Evidence of Mg segregation to threading dislocation in normally-off GaN-HEMT. IEEE Trans. Nanotechnol. 2019, 18, 995–998. [Google Scholar] [CrossRef]
- Usami, S.; Mayama, N.; Toda, K.; Tanaka, A.; Deki, M.; Nitta, S.; Honda, Y.; Amano, H. Direct evidence of Mg diffusion through threading mixed dislocations in GaN p–n diodes and its effect on reverse leakage current. Appl. Phys. Lett. 2019, 114, 232105. [Google Scholar] [CrossRef]
Sample ID | SiH4 Source (sccm) | FWHM (arcsec) | TDD (cm−2) | EPD (cm−2) | Wafer Bowing (µm) | ||
---|---|---|---|---|---|---|---|
(002) | (102) | Screw-Type | Edge-Type | ||||
A | 0 | 466 ± 5 | 945 ± 5 | (4.36 ± 0.09) × 108 | (3.59 ± 0.02) × 109 | 6.52 × 108 | 22.0 |
B | 25 | 468 ± 5 | 920 ± 5 | (4.40 ± 0.09) × 108 | (3.33 ± 0.02) × 109 | 5.76 × 108 | 15.7 |
C | 50 | 466 ± 5 | 908 ± 5 | (4.36 ± 0.09) × 108 | (3.23 ± 0.02) × 109 | 5.52 × 108 | 15.7 |
D | 75 | 467 ± 5 | 872 ± 5 | (4.38 ± 0.09) × 108 | (2.88 ± 0.02) × 109 | 5.34 × 108 | 14.8 |
E | 100 | 441 ± 5 | 786 ± 5 | (3.91 ± 0.09) × 108 | (2.25 ± 0.02) × 109 | 3.24 × 108 | 9.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.-J.; Liu, C.-W.; Wu, S.-K.; Huynh, S.-H.; Jiang, J.-G.; Yen, S.-A.; Mai, T.T.; Wen, H.-C.; Chou, W.-C.; Hu, C.-W.; et al. Improving Transport Properties of GaN-Based HEMT on Si (111) by Controlling SiH4 Flow Rate of the SiNx Nano-Mask. Coatings 2021, 11, 16. https://doi.org/10.3390/coatings11010016
Dai J-J, Liu C-W, Wu S-K, Huynh S-H, Jiang J-G, Yen S-A, Mai TT, Wen H-C, Chou W-C, Hu C-W, et al. Improving Transport Properties of GaN-Based HEMT on Si (111) by Controlling SiH4 Flow Rate of the SiNx Nano-Mask. Coatings. 2021; 11(1):16. https://doi.org/10.3390/coatings11010016
Chicago/Turabian StyleDai, Jin-Ji, Cheng-Wei Liu, Ssu-Kuan Wu, Sa-Hoang Huynh, Jhen-Gang Jiang, Sui-An Yen, Thi Thu Mai, Hua-Chiang Wen, Wu-Ching Chou, Chih-Wei Hu, and et al. 2021. "Improving Transport Properties of GaN-Based HEMT on Si (111) by Controlling SiH4 Flow Rate of the SiNx Nano-Mask" Coatings 11, no. 1: 16. https://doi.org/10.3390/coatings11010016
APA StyleDai, J. -J., Liu, C. -W., Wu, S. -K., Huynh, S. -H., Jiang, J. -G., Yen, S. -A., Mai, T. T., Wen, H. -C., Chou, W. -C., Hu, C. -W., & Xuan, R. (2021). Improving Transport Properties of GaN-Based HEMT on Si (111) by Controlling SiH4 Flow Rate of the SiNx Nano-Mask. Coatings, 11(1), 16. https://doi.org/10.3390/coatings11010016