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Abstract: Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is known for its
potential to replace indium–tin oxide in various devices. Herein, when fabricating finger-type PE-
DOT:PSS electrodes using conventional photolithography, the cross-sectional profiles of the patterns
are U-shaped instead of rectangular. The films initially suffer from non-uniformity and fragility
as well as defects owing to undesirable patterns. Adding a small amount of hydrolyzed silane
crosslinker to PEDOT:PSS suspensions increases the mechanical durability of PEDOT:PSS patterns
while lifting off the photoresist. To further improve their microfabrication, we observe the effects
of two additional oxygen (O2) plasma treatments on conventional photolithography processes for
patterning PEDOT:PSS, expecting to observe how O2 plasma increases the uniformity of the patterns
and changes the thickness and U-shaped cross-sectional profiles of the patterns. Appropriately expos-
ing the patterned photoresist to O2 plasma before spin-coating PEDOT:PSS improves the wettability
of its surface, including its sidewalls, and a similar treatment before lifting off the photoresist helps
partially remove the spin-coated PEDOT:PSS that impedes the lift-off process. These two additional
processes enable fabricating more uniform, defect-free PEDOT:PSS patterns. Both increasing the
wettability of the photoresist patters before spin-coating PEDOT:PSS and reducing its conformal
coverage are key to improving the photolithographic microfabrication of PEDOT:PSS.

Keywords: microfabrication; photolithography; patterning; PEDOT:PSS; plasma; thickness; film;
surface; height profile; terahertz device

1. Introduction

Advancing terahertz (THz) technology [1,2] requires developing many functional
quasi-optical components for THz devices such as phase shifters [3–8], filters [9], phase
gratings [10], and polarizers [11]; however, most of these device components use indium–
tin oxide (ITO) or metal electrodes, the transmittance of which is not necessarily high
enough for THz devices.

To improve transmittance characteristics, on one hand, finger-type ITO electrodes [12],
which mitigate the absorption of light via ITO, have been fabricated by patterning flat
ITO electrodes. On the other hand, materials with higher transmittance in the THz re-
gion such as graphene [13] are actively being attempted to replace ITO. For this purpose,
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) [14–19] is a promis-
ing candidate, and patterning PEDOT:PSS as a microfabrication strategy has been well
studied. PEDOT:PSS exhibits high transmittance in the THz region, and because of its
solution-process capability, it can be patterned using photolithography. Under these circum-
stances, replacing the finger-type ITO electrodes with patterned PEDOT:PSS ones would
attain even higher transmittance in the THz region. Therefore, we attempted to fabricate
finger-type electrodes using PEDOT:PSS; however, the films suffered from non-uniformity
and fragility as well as defects owing to undesirable patterns.
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As wearable and portable electronics have continued to develop [20], PEDOT:PSS as a
flexible transparent electrode has been gaining an important role in such optoelectronic
devices [21]. For practical purposes, developing versatile patterning techniques is required
for incorporating PEDOT:PSS into these optoelectronic devices. Micropatterning has been
developed for organic materials, but some challenges have not yet been fully addressed;
in particular, the surface morphology and electrical and optical properties of patterned
PEDOT:PSS are adversely influenced by patterning processes. This is because organic
materials, i.e., soft matter, that can be dissolved or dispersed in water or organic solvents are
usually mechanically fragile and chemically sensitive. These difficulties have encouraged
researchers to devise various approaches in different micro- and nanopatterning techniques
to solve these problems and to ultimately achieve well-organized, uniformly patterned
surfaces with fine structures.

In principle, photolithography is applicable to organic materials including PEDOT:PSS
when the proper materials and processes are selected [16]. Traditional photolithography
materials and processes can be used in the lift-off process. As another alternative method,
using orthogonal solvents and corresponding photoresists enables creating submicrometer-
scale PEDOT:PSS patterns [22,23]; however, they can potentially be damaged by aggressive
organic solvents. In addition, PEDOT:PSS can be directly crosslinked by ultraviolet (UV) ir-
radiation with an appropriate photoinitiator [24–26], but the resolution is limited to several
micrometers. From the above-mentioned techniques, we choose traditional photolithog-
raphy together with the lift-off process. In other words, we observe how PEDOT:PSS
films can be patterned using traditional photolithography and how undesirable patterns or
defects, if any, made by photolithographic processes can be altered and improved.

Plasma treatments are well known and offer many advantages in fabrication processes
because they can modify the surface properties, but exposing a surface to plasma does not
alter its bulk properties [27]. Plasma treatment can prime any surface for secondary manu-
facturing processes by eliminating all traces of contamination. Therefore, we are interested
in observing the correlation between plasma treatments and the surface structures and
morphologies of photolithographic PEDOT:PSS patterns while exploring ways to improve
their quality.

In this study, we aim to tackle the aforementioned problems, i.e., the non-uniformity
and fragility of the films as well as defects owing to undesirable patterns, and to improve
the quality of photolithographic PEDOT:PSS patterns. Although photolithography has
already been established for PEDOT:PSS, some material- and process-related factors seem
to affect the quality of the films and patterns. For this purpose, we introduce two addi-
tional O2 plasma processes into traditional photolithography, and we analyze how each
additional plasma treatment affects the PEDOT:PSS patterns, expecting to improve them
by applying these two additional processes. From a practical perspective, exploiting these
basic, unsophisticated fabrication processes while unveiling their effects helps further
develop the photolithographic patterning of PEDOT:PSS thin films in a facile, familiar way.

2. Materials and Methods
2.1. Materials and Procedure

Soda-lime glass substrates with dimensions of 25 × 25 × 0.7 mm were sequentially
sonicated in commercially available detergent RBS™ 35 Concentrate (Thermo Fisher Sci-
entific, Waltham, MA, USA) and deionized water (>18 MΩ·cm) for 15 min. To increase
its hydrophilicity, the surface of the substrates was exposed to O2 plasma with a power
of 100 W and O2 flowing at 15 sccm for 3 min using a Samco-ucp PC-300 plasma cleaner
(Ruggell, Liechtenstein). A positive photoresist AZ4620 (Merck KGaA, Darmstadt, Ger-
many) was spin-coated onto the substrates at 4000 rpm for 40 s and then baked at 90 ◦C
for 7 min. The photoresist films were exposed to UV light for 7 s using an EVG®620 mask
aligner. The photoresist films were developed in a developer solution AD-10 (Merck KGaA,
Darmstadt, Germany) for 3 min.
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Figure 1 illustrates the designed mask patterns of a unit cell together with an enlarged
diagram of a corner of the electrode area showing a part of the finger-type electrodes near
the edge. The total electrode dimensions are 14 × 13 mm, and each finger-type electrode
is 20 µm wide with a 20 µm gap between neighboring electrodes. In practice, the four
designed unit cells were laid out in a soda-lime mask with dimensions of 5 × 5 × 0.09 in
(12.7 × 12.7 × 0.229 cm).
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Figure 1. Designed mask pattern for a unit cell (right) and enlargement of the finger-type elec-
trodes (left).

A PEDOT:PSS dispersion (PH1000, Heraeus Epurio Clevios™, Leverkusen, Germany)
was filtered through a 0.45 µm syringe filter and then mixed with 0.2 wt %
(3-glycidyloxypropyl)trimethoxysilane (GOPS) [28,29], a hydrolyzed silane crosslinker
(Sigma-Aldrich, St. Louis, MO, USA). The suspension was sonicated for 30 min to homog-
enize the PEDOT:PSS dispersion, which was then spin-coated at 3000 rpm for 60 s onto
the patterned photoresist. The spin-coated substrates were baked at 130 ◦C for 15 min and
finally sonicated in acetone to lift off the photoresist.

In our modified process, two O2 plasma treatments were independently added,
one before spin-coating PEDOT:PSS and one before lifting off the photoresist. The O2
plasma power and the O2 flow rate were set to 100 W and 15 sccm, respectively, for both
reactive-ion etching (RIE) and plasma etching (PE) modes, and each operation time was
varied. The latter mode is more isotropic and gentler, whereas in the former mode, the O2
species are generated more vertically and hit the substrates more vigorously because of the
potential between the electrodes in the chamber.

2.2. Measurements

A Dimension ICON scanning probe microscope system (Bruker, Billerica, MA, USA),
which offers precisions of <0.15 Å nm for XY noise and <0.35 Å Z sensor noise, was used to
measure the film thickness and probe its height profiles on the surface of the substrates.
We prepared three samples for each set of conditions. For each sample, we measured at
least three points in the upper, middle, and lower parts of the electrode area shown in
Figure 1, and we measured each point three times. We also used a Quatek (Sheung Wan,
Hong Kong) four-point probe test system, composed of a 5601TSR surface resistance tester
and a QT-50 manual test console, to measure the surface resistance Rs(Ω) of films, from
which the conductivity σ (S/cm) = 1/(Rs·d) was deduced using the film thickness d (cm).

3. Results
3.1. Transferring an Image to the Photoresist and the Fragility of PEDOT:PSS Patterns

To draw a finger-type (stripe-type) image on the photoresist, a mask pattern (design
drawing or pattern) is first transferred. The stripe-type-patterned photoresist works as a
template or mold to create PEDOT:PSS patterns [16,30]. To this end, some process condi-
tions are optimized using various quality engineering methods [31], i.e., by controlling the
spin-coating rotational speed, baking temperature, UV-light-exposure time, and develop-
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ing time, as described in the experimental section. Using these optimized conditions, we
attain a high-quality patterned photoresist, and the patterns are transferred from the mask
patterns with a gap of 20 µm between neighboring patterns. By using the image (pattern)
of the photoresist, PEDOT:PSS is then patterned via microprocessing.

Initially, the PEDOT:PSS patterns were very mechanically fragile, especially in the
lift-off process, during which the substrates were shaken in an acetone bath. To remove
the photoresist patterns from the substrates, they were inevitably shaken, which presum-
ably applied a frictional force to the PEDOT:PSS patterns on the substrates. In fact, the
PEDOT:PSS patterns were partially peeled off and bent out of the substrates, as shown in
Figure 2. Simply immersing substrates in acetone, however, does not remove photoresist
patterns from substrates; therefore, to avoid damaging the patterns, the films had to be
strengthened. This fragility can be attributed to the weak anchoring of the PEDOT:PSS
films to the surface of the substrates, although this technique is well known [28,29,32].
However, exposing the photoresist patterns to O2 plasma did not mitigate this problem, so
it had to be resolved using surfactants.
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electrodes observed using an optical microscope. (b) Macroscale image of the entire substrate.

Specifically, GOPS, a hydrolyzed silane crosslinker, was used to improve the anchor-
ing, as its epoxy group can react open under acidic conditions, yielding a hydroxyl group.
When GOPS is added to PEDOT:PSS suspensions, the hydroxyl groups strongly interact
with the sulfonic acid groups of PEDOT:PSS via hydrogen bonds. The trimethoxysilane
groups of GOPS are hydrolyzed in acidic suspensions and become Si–OH groups, which
form stable Si–O–Si bonds on the glass surface [32]. To reveal the effects of GOPS in the
PEDOT:PSS suspensions, its concentration was varied, and the durability of the resulting
PEDOT:PSS patterns was evaluated. As the GOPS concentration increased, fewer defects
ended to appear in the PEDOT:PSS patterns. However, 3.0 wt % GOPS caused PEDOT:PSS
to agglomerate, which was previously reported to hinder spin-coating [29]. Further, we
confirmed that adding GOPS decreased the conductivity of the PEDOT:PSS films, sug-
gesting a trade-off relationship between improving the durability and maintaining the
conductivity of the PEDOT:PSS films. Figure 3 shows the relationship between the conduc-
tivity of PEDOT:PSS films and the GOPS concentration, which shows almost the same trend
as that observed in previous work [28], although the initial conductivity without GOPS
was slightly lower here. Based on these findings, we used 0.2 wt % GOPS in subsequent
experiments because this concentration yielded PEDOT:PSS films that were sufficiently
durable during the lift-off process.

3.2. Traditional Process for PEDOT:PSS

Figure 4 shows the two-dimensional height profiles of the PEDOT:PSS patterns ob-
tained using the traditional process. Each sample was measured at several points in the
sample, and an average was taken at each position. Considering the photoresist patterns,
we expect to observe a rectangular cross-section with a line width of 20 µm. Surprisingly,
however, the actual profiles are U-shaped [33,34], with large variations in thickness at
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the center of the lines. The U-shaped profiles could be attributed to the evaporation of
solvent and its corollary mass transfer [35]. If the surface of the photoresist has good
wettability, the suspension spreads not only in the planar direction but also upward along
the sidewalls of the photoresist. In addition, as the solvent evaporates, mass transfer occurs
at the edge of the suspension on the sidewall of the photoresist, thereby leading to the
U-shaped profiles at the edge. According to this mechanism, a higher concentration with
higher viscosity would reduce the peak height of the U-shaped profiles, whereas better
wettability, including on the sidewalls of the photoresist, would develop U-shaped profiles.
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Figure 4. Height profiles of the patterned PEDOT:PSS lines made using the traditional process. The
error bars show the difference in the maximum and minimum values at each position.

From another perspective, the bottom of the lines is approximately 30 µm, which is
1.5 times larger than the designed value. In contrast, the peak-to-peak width is almost
20 µm, suggesting that each peak must be determined by the sidewall of the patterned
photoresist. Presumably, when PEDOT:PSS is spin-coated onto the patterned photoresist,
PEDOT:PSS not only fills the spaces between the lines of the patterned photoresist but
also covers the top of the photoresist. The PEDOT:PSS initially present on top of the
photoresist can be connected to the PEDOT:PSS between the lines via conformal coverage.
Therefore, even after the photoresist patterns are removed during the lift-off process,
partially connected PEDOT:PSS would remain at the bottom of the patterns [30]. These
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observations suggest that removing the PEDOT:PSS from the top of the photoresist may
help improve the quality and uniformity of the final PEDOT:PSS patterns.

3.3. Adding an O2 Plasma Treatment before Spin-Coating

O2 plasma increases the hydrophilicity of surfaces. Contact angle measurements
revealed that the surface of the patterned photoresist was rather hydrophobic, which
prompted us to add an O2 plasma treatment before spin-coating PEDOT:PSS, which would
also remove the PEDOT:PSS from the top of the patterned photoresist. Figure 5 shows how
PEDOT:PSS suspensions spread on the surface of the photoresist with and without an O2
plasma treatment; clearly, increasing the O2 plasma operation time further increased the
wettability of the patterned photoresist surface.
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We found that adding the O2 plasma treatment at this point during processing indeed
improves the uniformity of the thickness. Figure 6 shows how the height profiles of the
cross-sectional PEDOT:PSS patterns change when the patterned photoresist is plasma-
treated in RIE mode before spin-coating it with PEDOT:PSS. As the operating time of the
O2 plasma treatment increases, the center of the lines becomes more uniform. Interestingly,
however, the peaks that appear at the edge of each line become more pronounced with the
increasing operating time, which suggests that the plasma-treated surface of the photoresist-
patterned substrates indeed provides better wettability for PEDOT:PSS and hence better
uniformity at the center of the lines. Specifically, the thickness variations at the center of the
lines are improved, decreasing from ±33.9 to ±5.7 nm. Furthermore, O2 plasma increases
the wettability of the sidewalls of the photoresist patterns, and therefore, the peaks become
more pronounced with the increasing operating time owing to the so-called coffee ring
effect [35,36]. This finding can be verified by using a gentler O2 plasma treatment in
PE mode.

Figure 7 shows how the height profiles of the cross-sectional PEDOT:PSS patterns
change when the photoresist is plasma-treated in PE mode before spin-coating PEDOT:PSS.
In contrast to the results of the RIE O2 plasma treatment, the thickness of PEDOT:PSS
changes more mildly and gently, with little impact on the sidewalls of the photoresist
pattern. Figure 8 compares the changes in thickness and its variability at the center of
the PEDOT:PSS patterns when the patterned photoresist is plasma-treated in RIE or PE
mode before spin-coating. In RIE mode, the O2 plasma treatment is indeed vigorous and
more rapidly reduces the film thickness. Presumably, this mode makes the surface of the
photoresist more hydrophilic than PE mode, which is consistent with the results shown
in Figure 5. Although in principle, the RIE plasma mode bombards the substrate surface
more vertically, it also more severely affects the sidewalls. Therefore, the hydrophilicity
increases on the entire surface of the patterned photoresist, including the sidewalls, so the
U-shaped profiles become more pronounced. Meanwhile, the films become thinner, with
less variability at the center of each patterned line and a higher peak at the edge.
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Figure 7. Height profiles of the patterned PEDOT:PSS lines made by plasma-treating the photoresist
in plasma etching (PE) mode before spin-coating PEDOT:PSS. The error bars show the maximum
and minimum values at each position.
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Figure 8. Changes in thickness and its variability at the center of the PEDOT:PSS patterns as a
function of O2 plasma exposure time using PE and RIE modes.

In subsequent experiments, to avoid developing U-shaped cross-sectional profiles in
the PEDOT:PSS patterns, we performed the O2 plasma treatment for 3 min in PE mode
before spin-coating PEDOT:PSS for the following step, i.e., lifting off the photoresist.

3.4. Adding an O2 Plasma Treatment before Lifting Off the Photoresist

The next step introduces another difficulty that disturbs the uniformity of the patterns.
Undesirable patterns, a type of defect, are often observed when lifting off the photoresist.
Figure 9 shows an image of typical undesirable patterns remaining on the surface of the
patterned PEDOT:PSS, which we assume are related to the PEDOT:PSS covering the top of
the photoresist via conformal coverage [30]. Presumably, when the photoresist patterns
are lifted off, the PEDOT:PSS anchored to the surface of the photoresist mechanically
causes this problem. Further, brush-like wrinkles often appear around the boundaries
after spin-coating PEDOT:PSS onto the patterned photoresist, as shown in Figure 10b,
which prompts us to consider the effects of conformal coverage. During the spin-coating
process, PEDOT:PSS spreads over the entire patterned photoresist surface, meaning that
PEDOT:PSS can spread not only in the gaps between the strip patterns but also on top of
the patterned lines. Therefore, removing such PEDOT:PSS covering the photoresist before
lifting it off would help reduce these defects.
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Figure 10. Photoresist patterns (a) before and (b) after spin-coating PEDOT:PSS observed using an
optical microscope.

Thus, to remove the PEDOT:PSS from the top of the photoresist caused by confor-
mal coverage, we introduce another O2 plasma process before lifting off the photoresist
patterns. As expected, applying this additional O2 plasma treatment at this stage reduces
the undesirable patterns and defects in the resulting PEDOT:PSS when the photoresist is
finally removed with acetone, as shown in Figure 11. Obviously, however, a longer plasma
treatment at this stage also reduces the thickness of PEDOT:PSS itself or even damages
the patterns. As an extreme case in which we plasma-treated the PEDOT:PSS pattern for
120 s, its thickness decreased to one-fifth of its designed value, and its linewidths became
two-thirds narrower. Further, we observed jagged line patterns, which are side effects of O2
plasma exposure at this stage. Therefore, the operating time of O2 plasma has a trade-off
relationship between mitigating these undesirable patterns and maintaining the quality of
the PEDOT:PSS patterns.
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Figure 11. Microscopic image of undesirable patterns being removed when adding O2 plasma in RIE
mode for 15 s.

Nevertheless, adding an O2 plasma treatment at this stage enables the removal of the
unfavorable PEDOT:PSS covering the photoresist, suggesting that it is crucial to remove
such PEDOT:PSS from the top of the photoresist or avoid conformal coverage. In order
to remove this PEDOT:PSS without affecting the film thickness or damaging the film, O2
plasma etching with masking would be more reliable.

3.5. Combination of the Added O2 Plasma Treatments

Naturally, we are also interested in how combining the two added O2 plasma processes
eventually improves the quality of the PEDOT:PSS patterns. We thus optimized the plasma
treatment operation time in PE mode to be 3 min before spin-coating PEDOT:PSS and that
before lifting off the photoresist in RIE mode to be 1 s. Our investigation reveals that even
1 s of O2 plasma in the RIE mode assists with removing undesirable PEDOT:PSS, thereby
promoting the lift-off process while avoiding defects. Figure 12 shows microscopic images
and height profiles of the PEDOT:PSS patterns when both O2 plasma treatments are added
to the process. Applying both treatments enables fabricating more uniform, defect-free
PEDOT:PSS finger-type patterns with a deviation in the thickness of ±10.6 nm at the
center of the cross-section. The bottom of the lines is still beyond the designed value, thus
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requiring further optimization; however, avoiding conformal coverage would be crucial to
improving microfabrication using photolithography.
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Figure 12. (a) Microscopic images and (b) height profiles of the PEDOT:PSS patterns made by adding
both O2 plasma treatments to traditional photolithography.

4. Conclusions

We fabricated finger-type PEDOT:PSS electrodes using conventional photolithographic
patterning techniques, during which the cross-sectional U-shaped profiles of the PE-
DOT:PSS patterns were found instead of rectangular cross-sections. The fragility of the
PEDOT:PSS patterns was improved by adding 0.2 wt % GOPS to the PEDOT:PSS sus-
pensions. Using the strengthened PEDOT:PSS patterns, we investigated the effects of
adding O2 plasma treatments to the traditional photolithography process for patterning PE-
DOT:PSS, expecting to observe how this treatment improved the uniformity of the patterns
and how it changed the thickness and U-shaped profiles of the patterns. One O2 plasma
treatment was introduced before spin-coating PEDOT:PSS onto the patterned photoresist
layer, and the other was employed before the lift-off process for removing the photoresist
layer. The former improved the wettability of the patterned photoresist surface, including
that of its sidewalls, and the latter helped partially remove the spin-coated PEDOT:PSS
that impeded the lift-off process. In the former O2 plasma treatment, the uniformity of
the thickness at the center of the lines became more uniform, with an improved deviation
from several tens of nanometers to several nanometers; however, the U-shaped patterns
became more pronounced when the sidewalls of the patterned photoresist were exposed to
the plasma in RIE mode, which could be avoided using more gentle plasma in PE mode.
The latter O2 plasma treatment eventually facilitated the lift-off process while preventing
defects, uniformly reducing the entire thickness of the PEDOT:PSS patterns while removing
the PEDOT:PSS covering the photoresist. Our findings suggest that the most important
factor is how to remove PEDOT:PSS from the top of the photoresist or avoid its conformal
coverage. Applying these two additional processes enabled fabricating more uniform,
defect-free PEDOT:PSS patterns. Realizing a real THz device using the investigated tech-
niques requires considerable effort to optimize the entire procedure, which would involve
many factors, such as the cross-sectional shape of the patterned lines, defects, conductivity,
and anchoring strength.
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