The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. The Synthesis of NHSi
2.3. Analysis and Measurement of NHSi Surfactant
2.4. The Wetting Ability of Nhsi to Superfine Fiber Synthetic Leather
3. Results and Discussion
3.1. GPC Analysis
3.2. FT-IR
3.3. The Determination of Contact Angle
3.4. The Determination of Surface Tension of NHSi
3.5. The Wetting Ability of NHSi to Superfine Fiber Synthetic Material
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaban, S.M.; Kang, J.; Kim, D.H. Surfactants: Recent advances and their applications. Compos. Commun. 2020, 22, 100537. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 182–183. [Google Scholar]
- Barz, J.; Haupt, M.; Oehr, C.; Hirth, T.; Grimmer, P. Stability and water wetting behavior of superhydrophobic polyurethane films created by hot embossing and plasma etching and coating. Plasma Process. Polym. 2019, 16, 1800214. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, M.D.; Tan, J.L.; Feng, S.Y. Impact of molecular architecture on surface properties and aqueous stabilities of silicone-based carboxylate surfactants. Langmuir 2020, 36, 2023–2029. [Google Scholar] [CrossRef]
- Dai, M.W.; Wang, J.Y.; Zhang, Y. Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Colloid. Surf. A 2020, 601, 124994. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Y.; Zhang, S.Q.; Zhang, H.M.; Zhao, S.L.; Zhang, J.L.; Fei, B.H. Mechanical and thermal properties of waterborne polyurethane coating modified through one-step cellulose nanocrystals/graphene materials sols method. Coatings 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Archer, R.J.; Nienhaus, B.B.; Dunderdale, G.J.; Hozumi, A. Recent progress and future directions of multifunctional (super)wetting smooth/structured. Adv. Funct. Mater. 2020, 30, 1907772. [Google Scholar] [CrossRef]
- Băran, A.; Iovescu, A.; Gosecka, M.; Stîngă, G.; Peretz, S.; Basinska, T.; Slomkowski, S.; Maxim, M.E.; Anghel, D.F. Peculiarities of linear and hyperbranched polyglycidols in water and aqueous surfactant solutions. Eur. Polym. J. 2017, 94, 162–172. [Google Scholar] [CrossRef]
- Wang, X.C.; Sun, S.W.; Wang, H.J.; Guo, X.X. Synthesis and characterization of polysiloxane grafted polyamide-amine surfactants. J. Surfactants Deterg. 2017, 20, 521–528. [Google Scholar] [CrossRef]
- Wang, X.C.; Qin, Y.Y.; Wang, H.J. Synthesis and characterization of dendritic-linear poly(amido) amine. Polym. Mater. Sci. Eng. 2015, 31, 41–45. [Google Scholar]
- Riascos, I.M.; Hoyos, B.A. Fluorocarbon Versus Hydrocarbon Organosilicon Surfactants for Wettability Alteration: A Molecular Dynamics Approach. J. Ind. Eng. Chem. 2020, 88, 224–232. [Google Scholar] [CrossRef]
- Bi, Z.C.; Liao, W.S.; Qi, L.Y. Synthesis and wetting properties of a novel wetting agent by molecular design process. Colloid Surf. A 2005, 256, 117–121. [Google Scholar] [CrossRef]
- Mestri, R.S.; Pratap, A.P.; Panchal, K.H.; Gamot, K.; Datir, K.A. Synthesis of cleavable silicone surfactant for water-repellent application. Chem. Pap. 2020, 74, 1407–1416. [Google Scholar] [CrossRef]
- Andrade, B.; Knewstub, S.N.; Harris, K.; Tucker, C.J.; Katz, J.S.; Zimmerman, S.C. Nonionic Surfactant Properties of Amphiphilic Hyperbranched Polyglycerols. Langmuir 2020, 36, 10103–10109. [Google Scholar] [CrossRef]
- Pukale, D.D.; Bansode, A.S.; Jadhav, N.L.; Pinjari, D.V.; Kulkarni, R.R. Review on silicone surfactants: Silicone-based gemini surfactants, physicochemical properties and applications. Tenside Surfactants Det. 2019, 56, 268–278. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, J.J.; Zhang, P.J.; Shi, G.C.; Li, Y.; Zhao, J.Y.; Liu, Z.F.; Yang, J.; Du, F.P.; Fan, R.J. Wetting and adhesion behavior on apple tree leaf surface by adding different surfactants. Colloids Surf. B 2020, 187, 110602. [Google Scholar] [CrossRef]
- Ohno, M.; Esumi, K.; Meguro, K. Aqueous Solution Properties of a Silicone Surfactant and Its Mixed Surfactant Systems. J. Oil Chem. Soc. 1992, 69, 80–84. [Google Scholar] [CrossRef]
- Varaprasad, N.S.S.; Ramakrishnan, S. Hybrasurfs. A New Class of Hyperbranched Surfactants. Langmuir 2018, 34, 11464–11472. [Google Scholar] [CrossRef]
- Polyether Polyols-Determination of Hydroxyl Number; GB 12008.3-89; State Bureau of Technical Supervision: Shenzhan, China, 1990.
- Wang, X.C.; Yuan, X.Z.; Qiang, T.T.; Chen, X. Synthesis of hydroxyl-terminated hyperbranched polymer and its fluences retannage properties of chrome tanned leather. Fine Chem. 2009, 26, 68–72. [Google Scholar]
- Matsuda, Y.; Kobayashi, M.; Takahara, A.; Tanaka, A.; Sato, T. On the dimension of a hyperbranched polymer synthesized from a styrene derivative. Polym. J. 2008, 40, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.Y.; Zhai, L.S.; Li, K.; Liu, X.; Deng, B.; Xu, W.L. A highly efficient nano-graphite-doped TiO2 photocatalyst with a unique sea-island structure for visible-light degradation. Catal. Sci. Technol. 2020, 10, 1161–1170. [Google Scholar] [CrossRef]
- Ren, L.F.; Niu, Q.X.; Zhao, J.; Qiang, T.T. Amphiphilic hyperbranched polymers: Synthesis, characterization and self-assembly performance. J. Leather Sci. Eng. 2020, 2, 4–16. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, H.; Peng, Z.G.; Zheng, Y. Synthesis, Characterization and evaluation of long-acting hyperbranched cationic polymer clay stabilizer used in water flooding. Polym. Test. 2020, 82, 106344. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
- Zhang, G.P.; Li, J.Q.; Sun, S.X.; Luo, Y.J. Azido-terminated hyperbranched multi-arm copolymer as energetic macromolecular plasticizer. Propellants Explos. Pyrotech. 2019, 44, 345–354. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.Z.; Zhang, X.R.; Weng, L. Hyperbranched unsaturated polyester resin for application in impregnation coatings. Iran. Polym. J. 2017, 26, 81–89. [Google Scholar] [CrossRef]
- Chozhan, C.K.; Chandramohan, A.; Alagar, M. Benzoxazine modified diglycidyl ether of bisphenol-a/silicon/siliconized epoxy hybrid polymer matrices: Mechanical, thermal, electrical and morphological properties. J. Macromol. Sci. A 2019, 56, 1–17. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.Q.; Fu, J.G.; Gu, G.H. Wetting behavior and mechanism of wetting agents on low-energy. Colloid Surf. A 2013, 424, 10–17. [Google Scholar] [CrossRef]
- Pukale, D.D.; Bansode, A.S.; Pinjari, D.V.; Kulkarni, R.R.; Sayed, U. Application of silicone surfactant along with hydrocarbon surfactants to textile washing for the removal of different complex stains. J. Surfactants Deterg. 2017, 20, 287–295. [Google Scholar] [CrossRef]
- Li, Z.H. Synthesis and Properties of Betaine Zwitterionic Surfactants with Branched Structure; Dalian University of Technology: Dalian, China, 2013. [Google Scholar]
- Mit-Uppatham, C.; Nithitanakul, M.; Supaphol, P. Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 2004, 205, 2327–2338. [Google Scholar] [CrossRef]
Molecular Weight | Peak 1 | Peak 2 |
---|---|---|
Mn, g/mol | 340.5 (8.641%) | 372.7 (7.01%) |
Mw, g/mol | 381.2 (9.296%) | 389.5 (8.437%) |
Mw/Mn | 1.119 (12.692%) | 1.045 (10.970%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, F.F.; Song, Y.H.; Lv, K.; Zhang, N.; Li, Y.C. The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability. Coatings 2021, 11, 32. https://doi.org/10.3390/coatings11010032
Liu J, Zhang FF, Song YH, Lv K, Zhang N, Li YC. The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability. Coatings. 2021; 11(1):32. https://doi.org/10.3390/coatings11010032
Chicago/Turabian StyleLiu, Jie, Fei Fei Zhang, Ying Hu Song, Kun Lv, Ni Zhang, and Yan Chun Li. 2021. "The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability" Coatings 11, no. 1: 32. https://doi.org/10.3390/coatings11010032
APA StyleLiu, J., Zhang, F. F., Song, Y. H., Lv, K., Zhang, N., & Li, Y. C. (2021). The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability. Coatings, 11(1), 32. https://doi.org/10.3390/coatings11010032