Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Media
2.2. Weight Loss Tests
2.3. Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. SEM Images and Corrosion Products Analysis
3.2. Linear Polarization Resistance
3.3. Electrochemical Impedance Spectroscopy
3.4. Tafel Curves
3.5. Weight Loss
4. Conclusions
- The SEM results show that there are corrosion products on the steel surfaces under aerobic conditions, however, almost none under anaerobic conditions. The corrosion products are Fe3O4, Fe2O3 and FeOOH under both aerobic and anaerobic conditions.
- The weight-loss and electrochemical results show that the corrosion rates of steel are much larger under aerobic conditions than under anaerobic conditions, and the glutaraldehyde accelerates the corrosion of steel under aerobic conditions, but shows few effects under anaerobic conditions.
- The formation of corrosion products inhibits the anodic reactions of steel under aerobic conditions, and the glutaraldehyde further enhances the cathodic reaction of steel.
- There are minor influences of glutaraldehyde on the corrosion of steel under anaerobic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veshareh, M.J.; Kjeldsen, K.U.; Findlay, A.J.; Nick, H.M.; Røy, H.; Marietou, A. Nitrite is a more efficient inhibitor of microbial sulfate reduction in oil reservoirs compared to nitrate and perchlorate: A laboratory and field-scale simulation study. Int. Biodeterior. Biodegrad. 2021, 157, 105154. [Google Scholar] [CrossRef]
- Dopffel, N.; Kögler, F.; Hartmann, H.; Costea, P.I.; Mahler, E.; Herold, A.; Alkan, H. Microbial induced mineral precipitations caused by nitrate treatment for souring control during microbial enhanced oil recovery (MEOR). Int. Biodeterior. Biodegrad. 2018, 135, 71–79. [Google Scholar] [CrossRef]
- Shen, Y.; Agrawal, A.; Suri, N.; An, D.; Voordouw, J.; Clark, R.; Jack, T.; Miner, K.; Pederzolli, R.; Benko, A.; et al. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field. J. Biotechnol. 2018, 266, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Shi, Z.; Jiang, G.; Yuan, Z. Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system. Water Res. 2020, 172, 115470. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Shi, Z.; Jiang, G.; Yuan, Z. Synergistic inhibitory effects of free nitrous acid and imidazoline derivative on metal corrosion in a simulated water injection system. Water Res. 2020, 184, 116122. [Google Scholar] [CrossRef]
- Bedoya, K.; Niño, J.; Acero, J.; Cabarcas, F.; Alzate, J.F. Assessment of the microbial community and biocide resistance profile in production and injection waters from an Andean oil reservoir in Colombia. Int. Biodeterior. Biodegrad. 2021, 157, 105137. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.; Abd Rahman, H.B.; Gu, T. An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. Corros. Sci. 2018, 139, 301–308. [Google Scholar] [CrossRef]
- Unsal, T.; Jia, R.; Kumseranee, S.; Punpruk, S.; Gu, T. Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. Eng. Fail. Anal. 2019, 100, 544–555. [Google Scholar] [CrossRef]
- Xie, F.; Wang, X.; Wang, D.; Wu, M.; Yu, C.; Sun, D. Effect of strain rate and sulfate reducing bacteria on stress corrosion cracking behaviour of X70 pipeline steel in simulated sea mud solution. Eng. Fail. Anal. 2019, 100, 245–258. [Google Scholar] [CrossRef]
- Lv, M.; Du, M.; Li, X.; Yue, Y.; Chen, X. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. J. Mater. Res. Technol. 2019, 8, 4066–4078. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, J.; Moradi, M.; Li, H.; Xu, D.; Lou, Y.; Luo, J.; Li, L.; Wang, Y.; Yang, Z.; et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. J. Mater. Sci. Technol. 2020, 48, 72–83. [Google Scholar] [CrossRef]
- Su, H.; Tang, R.; Peng, X.; Gao, A.; Han, Y. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline. Bioelectrochemistry 2020, 132, 107406. [Google Scholar] [CrossRef]
- Prithiraj, A.; Otunniyi, I.O.; Osifo, P.; van der Merwe, J. Corrosion behaviour of stainless and carbon steels exposed to sulphate–reducing bacteria from industrial heat exchangers. Eng. Fail. Anal. 2019, 104, 977–986. [Google Scholar] [CrossRef]
- Kokilaramani, S.; Al-Ansari, M.M.; Rajasekar, A.; Al-Khattaf, F.S.; Hussain, A.; Govarthanan, M. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures-A review. Chemosphere 2020, 265, 129075. [Google Scholar] [CrossRef]
- Arun, D.; Vimala, R.; Ramkumar, K.D. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus. Bioelectrochemistry 2020, 135, 107546. [Google Scholar] [CrossRef]
- Parthipan, P.; Sabarinathan, D.; Angaiah, S.; Rajasekar, A. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. J. Mol. Liq. 2018, 261, 473–479. [Google Scholar] [CrossRef]
- Teng, F.; Guan, Y.; Zhu, W. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation. Corros. Sci. 2008, 50, 2816–2823. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, J.; Wang, W.; Liao, H.; Chen, S.; Liu, G.; Chen, J. Constructing nanostructured functional film on EH40 steel surface for anti-adhesion of Pseudomonas aeruginosa. Surf. Coatings Technol. 2021, 405, 126683. [Google Scholar] [CrossRef]
- Sachan, R.; Singh, A.K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2). Constr. Build. Mater. 2020, 256, 119438. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Jabbar, K.A.; Rasool, K.; Pandey, R.P.; Sliem, M.H.; Helal, M.; Samara, A.; Abdullah, A.M.; Mahmoud, K.A. Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. Corros. Sci. 2019, 148, 397–406. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, D.; Lou, Y.; Li, Z.; Xu, D.; Du, C.; Li, X. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corros. Sci. 2018, 145, 151–161. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Chandrasekaran, K.; Barik, R.C. Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech 2018, 8, 495. [Google Scholar] [CrossRef]
- Dou, W.; Liu, J.; Cai, W.; Wang, D.; Jia, R.; Chen, S.; Gu, T. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros. Sci. 2019, 150, 258–267. [Google Scholar] [CrossRef]
- Parthipan, P.; Elumalai, P.; Narenkumar, J.; Machuca, L.L.; Murugan, K.; Karthikeyan, O.P.; Rajasekar, A. Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int. Biodeterior. Biodegrad. 2018, 132, 66–73. [Google Scholar] [CrossRef]
- Jurelevicius, D.; Ramos, L.; Abreu, F.; Lins, U.; de Sousa, M.P.; dos Santos, V.V.; Penna, M.; Seldin, L. Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs. Fuel 2021, 288, 119731. [Google Scholar] [CrossRef]
- Badawi, A.; Hegazy, M.; El-Sawy, A.; Ahmed, H.; Kamel, W. Novel quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for carbon steel and as biocides for sulfate reducing bacteria (SRB). Mater. Chem. Phys. 2010, 124, 458–465. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.; Abd Rahman, H.B.; Gu, T. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. Int. Biodeterior. Biodegrad. 2017, 125, 116–124. [Google Scholar] [CrossRef]
- Struchtemeyer, C.G.; Morrison, M.D.; Elshahed, M.S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells. Int. Biodeterior. Biodegrad. 2012, 71, 15–21. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, K.; Gu, T.; Raad, I. Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J. Microbiol. Biotechnol. 2009, 26, 1053–1057. [Google Scholar] [CrossRef]
- Xu, D.; Wen, J.; Gu, T.; Raad, I. Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. Corrosion 2012, 68, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Akyon, B.; Lipus, D.; Bibby, K. Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water. Sci. Total Environ. 2019, 666, 1161–1168. [Google Scholar] [CrossRef]
- Gardner, L.R.; Stewart, P.S. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol. 2002, 29, 354–360. [Google Scholar] [CrossRef]
- Wei, B.; Qin, Q.; Bai, Y.; Yu, C.; Xu, J.; Sun, C.; Ke, W. Short-period corrosion of X80 pipeline steel induced by AC current in acidic red soil. Eng. Fail. Anal. 2019, 105, 156–175. [Google Scholar] [CrossRef]
Condition | Concentration (ppm) | Element (%) | ||
---|---|---|---|---|
C | O | Fe | ||
Aerobic conditions | 0 | 9.80 | 22.20 | 66.49 |
50 | 8.43 | 19.26 | 64.88 | |
100 | 9.48 | 20.55 | 60.00 | |
Anaerobic conditions | 0 | 6.39 | 3.13 | 90.47 |
50 | 4.78 | 3.33 | 91.89 | |
100 | 7.71 | 19.65 | 68.68 |
Condition | Concentration (ppm) | Rs (Ωcm2) | Ydl × 10−4 (Scm−2sn) | n2 | Rct (kΩcm2) |
---|---|---|---|---|---|
Aerobic conditions | 0 | 17.95 | 2.716 | 0.922 | 5.030 |
50 | 18.71 | 3.893 | 0.893 | 2.870 | |
100 | 15.41 | 4.811 | 0.851 | 2.019 | |
Anaerobic conditions | 0 | 14.38 | 1.076 | 0.799 | 13.27 |
50 | 10.71 | 1.050 | 0.894 | 12.58 | |
100 | 16.53 | 1.107 | 0.894 | 14.39 |
Condition | Concentration (ppm) | Ecorr (mV) | icorr (μA/cm2) | βc (mV·dec−1) | βa (mV·dec−1) |
---|---|---|---|---|---|
Aerobic Conditions | 0 | −742.9 | 11.72 | 468.1 | 66.1 |
50 | −687.6 | 12.48 | 291.0 | 159.4 | |
100 | −686.8 | 14.33 | 216.0 | 143.4 | |
Anaerobic Conditions | 0 | −742.7 | 5.467 | 324.6 | 76.5 |
50 | −705.2 | 4.307 | 280.1 | 50.0 | |
100 | −739.3 | 6.565 | 307.1 | 60.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Pan, L. Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel. Coatings 2021, 11, 1176. https://doi.org/10.3390/coatings11101176
Tian F, Pan L. Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel. Coatings. 2021; 11(10):1176. https://doi.org/10.3390/coatings11101176
Chicago/Turabian StyleTian, Feng, and Lin Pan. 2021. "Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel" Coatings 11, no. 10: 1176. https://doi.org/10.3390/coatings11101176
APA StyleTian, F., & Pan, L. (2021). Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel. Coatings, 11(10), 1176. https://doi.org/10.3390/coatings11101176