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Abstract: Glutaraldehyde (GA) is widely employed as a biocide to control microbiologically influ-
enced corrosion in oil fields and industrial water treatment. It might be corrosive to metal. In this
study, the effect of glutaraldehyde on the corrosion behavior of X80 pipeline steel was investigated
using electrochemical measurement, weight-loss tests and scanning electron microscope (SEM).
The weight-loss and electrochemical data show that GA accelerates the corrosion of samples under
aerobic conditions, but just slightly influences the corrosion of steel under anaerobic conditions. The
results showed that the glutaraldehyde has a minor effect on the corrosion of steel under anaerobic
conditions.
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1. Introduction

Oil production is often carried out by injecting seawater [1–5]. However, the injected
seawater often brings nutrients and oxidants, such as sulfates, into the reservoir, so that
microorganisms can multiply [6–8]. In the natural environment, microorganisms can
cause pipeline corrosion in different industries, including marine environments [9,10], oil
fields [11,12] and industrial water systems [13,14]. They can form biofilms on the surface
of pipeline steel, metabolize corrosive media, and cause pipeline corrosion, which is called
microbiologically influenced corrosion (MIC) [15–17]. MIC accounts for 20% of the total
cost of corrosion [18–21].

At present, carbon steel is still used in downhole tubing because of its low cost. Down-
hole tubing is in an anaerobic environment, so sulfate reducing bacteria (SRB) can multiply
in the presence of nutrients and sulfates [22]. Moreover, SRB can obtain electrons from
the surface of steel and form sulfide by using sulfate as electron acceptor under anaerobic
conditions [23]. SRB can cause corrosion of pipelines [24], and sulfide produced by SRB
can lead to oil acidification [3,25]. Therefore, it is essential to inhibit the growth of SRB and
protect the pipeline from biological attack. In order to alleviate MIC caused by SRB, biocide
treatment is usually needed [26–28]. Because of its broad-spectrum and easy biodegradabil-
ity, glutaraldehyde is a popular biocide [29,30]. Its terminal aldehyde group can react with
amino and sulfhydryl groups of proteins and nucleic acids, thus changing the permeability
of cell membranes, which is widely effective against bacteria [31]. Previous studies have
shown that glutaraldehyde can inhibit the corrosion of SRB. Wen et al. found [29] that
chelators such as EDDS and HEIDA enhanced the inhibitory effect of glutaraldehyde on
SRB planktonic cells. Gardner [32] et al. evaluated the effect of antibacterial treatment
on sulfate reducing bacteria biofilms and concluded that glutaraldehyde and nitrite can
effectively inhibit the formation of sulfide in SRB, and glutaraldehyde treatment is more
effective. Xu [30] et al. discovered that the mixed biocide composed of glutaraldehyde,
EDDS and methanol had a significant effect on inhibiting the growth of SRB planktonic
cells and alleviating corrosion of carbon steel.

There are many studies on glutaraldehyde biocide, but few scholars have studied
whether glutaraldehyde is corrosive to pipelines. Therefore, it is important to study whether
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glutaraldehyde itself can cause corrosion to the pipeline. In this paper, the influence of dif-
ferent concentrations of glutaraldehyde on the corrosion behavior of X80 pipeline steel was
studied using electrochemical measurement methods such as electrochemical impedance
spectroscopy (EIS), linear polarization (LP) and potentiometric polarization curve, com-
bined with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS)
and energy dispersive X-ray analysis (EDXA) techniques.

2. Materials and Methods
2.1. Materials and Media

The material used in the experiment is API X80 pipeline steel (Baosteel, Shanghai,
China). Its chemical composition (mass percentage, %) is: C 0.07, Mn 1.82, Si 0.19, P 0.007,
S 0.023, Cr 0.026, Ni 0.17, Cu 0.02, Al 0.028, Mo 0.23, Ti 0.012, Nb 0.056, V 0.002, N 0.004,
B 0.0001, and Fe balance. The electrochemical samples were sealed with epoxy resin, and a
working area of 10 mm × 10 mm was reserved. The size of the samples for weight-loss
test was 30 mm × 15 mm × 5 mm. All samples were ground with SiC paper, cleaned with
deionized water and absolute ethanol, and dried for use. The electrochemical and weight
loss samples should be exposed under UV light for at least 20 min before the experiment.

The solution used in the experiment was API-RP 38 medium. The composition of
the medium is (g/L): MgSO4 × 7H2O (0.2), NaCl (10), KH2PO4 (0.5), ascorbic acid (0.1),
sodium lactate (4), yeast extract (1). The pH of the medium was 7.0–7.2. The medium under
aerobic conditions was sterilized at 121 ◦C for 20 min. Under anaerobic conditions, it was
deoxygenated by nitrogen for 2 h and sterilized at 121 ◦C for 20 min.

All anaerobic operations were performed in a clean anaerobic chamber filled with
nitrogen. The anaerobic chamber was exposed to UV light for at least 20 min before use.

2.2. Weight Loss Tests

The bottles used for the experiment contained 500 mL medium with 0, 50 or 100 ppm
glutaraldehyde. Three replicates were conducted for the weight loss test. Each sample,
with a total exposure area of 450 mm2, was suspended vertically in the medium with a thin
wire. After soaking for 1 day, the descaling solution with 500 mL HCl, 500 mL distilled
water and 3.5 g hexamethylenetetramine was used to remove the corrosion products on
the surface of samples [33]. A fresh descaling solution was used every time and the total
cleaning time was less than 2 min. The samples were weighed with an electronic balance
before and after the experiment, and the corrosion rate was calculated.

2.3. Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy

After the experiment, a scanning electron microscope (SEM, XL30-FEG, Eindhoven,
The Netherlands) was used to observe the morphology of corrosion products on the surface
of samples. The elemental composition of corrosion products was obtained by energy
dispersive X-ray microanalysis (EDXA, XL30-FEG, Eindhoven, The Netherlands). The
chemical valence states of elements were analyzed by X-ray photoelectron spectroscopy
(ESCALAB250, Thermo Fisher Scientific, Waltham, MA, USA), and the corrosion products
corresponding to binding energy were fitted by XPSPEAK software (version 4.1, Raymund
W.M. Kwok, Wise Solutions Inc., Canton, MI, USA).

2.4. Electrochemical Measurements

The PARSTAT 2273 electrochemical workstation (AMETEK, Berwyn, PA, USA) was
used to perform electrochemical measurements. The working electrode is X80 pipeline steel.
The counter electrode is platinum plate and the reference electrode is a saturated calomel
electrode (SCE). The LP curves were measured at a scanning rate of 0.166 mV/s with a
scanning range of ±20 mV. Tafel curves were obtained at a scanning rate of 0.166 mV/s
within a range of ±250 mV vs. the open circuit potential (OCP). The EIS measurements
were recorded with a 10 mV sinusoidal signal in a frequency range of 10−2 Hz to 105 Hz.
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3. Results and Discussion
3.1. SEM Images and Corrosion Products Analysis

Figure 1 shows the SEM images of corrosion products on the surface of samples under
aerobic and anaerobic conditions. Compared with anaerobic conditions, there were more
corrosion products on the surface of samples under aerobic conditions. Under aerobic
conditions, the corrosion products were massive and distributed locally on the surface
of samples without the glutaraldehyde. After adding the glutaraldehyde, the corrosion
products were layered structures and completely covered the surface of samples. Under
anaerobic conditions, no corrosion products were observed for the conditions with the
0 and 50 ppm glutaraldehyde, and only a small amount of corrosion products were found
when the concentration of glutaraldehyde increased to 100 ppm.
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The EDXA analysis results of corrosion products are shown in Table 1. The corrosion
products under aerobic and anaerobic conditions mainly included elements C, O and Fe.
It can be seen from Table 1 that the content of element O was very low for anaerobic
conditions with the 0 and 50 ppm glutaraldehyde, which indirectly indicates that there
were few corrosion products on the surface of samples. It was consistent with the SEM
images in Figure 1d,e.

Table 1. Energy dispersive X-ray (EDXA) results (wt.%) of corrosion products on the surface of
samples.

Condition
Concentration

(ppm)
Element (%)

C O Fe

Aerobic conditions
0 9.80 22.20 66.49

50 8.43 19.26 64.88
100 9.48 20.55 60.00

Anaerobic conditions
0 6.39 3.13 90.47

50 4.78 3.33 91.89
100 7.71 19.65 68.68

X-ray photoelectron spectroscopy was used to further analyze the compositions of
corrosion products. Figure 2 shows the high resolution Fe spectrum of corrosion products
under aerobic and anaerobic conditions. The corrosion products mainly contain Fe3O4,
Fe2O3 and FeOOH in the conditions with and without the glutaraldehyde.
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Figure 2. High resolution Fe spectra of corrosion products under the aerobic conditions with 0 ppm 

(a), 50 ppm (b), 100 ppm (c) and anaerobic conditions with 0 ppm (d), 50 ppm (e), 100 ppm (f). 

3.2. Linear Polarization Resistance 

Figure 3 shows the change of linear polarization resistance with different concentra-

tions of glutaraldehyde under aerobic and anaerobic conditions. The values of RP under 

aerobic conditions are much smaller than those under anaerobic conditions, i.e., the cor-

rosion of steel is much more severe under aerobic conditions than that under anaerobic 

conditions, which is primarily because oxygen acts as a cathodic depolarizer and can en-

hance the corrosion of steel. For aerobic conditions, there is a drop of the RP value when 

the glutaraldehyde is added, and RP decreases with the concentration of glutaraldehyde 

increasing, which indicates that the glutaraldehyde can enhance the corrosion of steel in 

the presence of oxygen. The SEM images in Figure 1 also confirm it. For anaerobic condi-

tions, there are almost no effects on the corrosion of steel with the addition of glutaralde-

hyde. 
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3.2. Linear Polarization Resistance

Figure 3 shows the change of linear polarization resistance with different concentra-
tions of glutaraldehyde under aerobic and anaerobic conditions. The values of RP under
aerobic conditions are much smaller than those under anaerobic conditions, i.e., the cor-
rosion of steel is much more severe under aerobic conditions than that under anaerobic
conditions, which is primarily because oxygen acts as a cathodic depolarizer and can
enhance the corrosion of steel. For aerobic conditions, there is a drop of the RP value when
the glutaraldehyde is added, and RP decreases with the concentration of glutaraldehyde
increasing, which indicates that the glutaraldehyde can enhance the corrosion of steel in the
presence of oxygen. The SEM images in Figure 1 also confirm it. For anaerobic conditions,
there are almost no effects on the corrosion of steel with the addition of glutaraldehyde.
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3.3. Electrochemical Impedance Spectroscopy

The EIS data of different concentrations of glutaraldehyde under aerobic and anaerobic
conditions were measured. The Nyquist diagrams are shown in Figure 4. As is well known,
there is a negative relationship between the diameter of a capacitive loop and the corrosion
rate of a coupon. It can be seen that the diameters of the capacitive loops of samples are
much larger under anaerobic conditions than under aerobic conditions, which shows that
the corrosion is more severe under aerobic conditions. The diameter of the loop decreases
with the increase of glutaraldehyde concentration in the low frequency region.
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The EIS data of different concentrations of glutaraldehyde were analyzed using an
equivalent circuit model, shown in Figure 5. The fitting results of EIS measurements are
shown in Table 2. Rs represents the solution resistance, and Qdl and Rct represent the
double layer capacitance and the charge transfer resistance, respectively. The impedance of
constant phase element (CPE) was adopted. As shown below,

ZCPE = Y−1
0 (jω)−n (1)

where Y0 and n are CPE parameters, ω is the angular frequency (rad/s).
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Table 2. Fitting results of electrochemical impedance spectroscopy under aerobic and anaerobic
conditions.

Condition Concentration
(ppm)

Rs
(Ωcm2)

Ydl × 10−4

(Scm−2sn) n2 Rct (kΩcm2)

Aerobic conditions
0 17.95 2.716 0.922 5.030
50 18.71 3.893 0.893 2.870

100 15.41 4.811 0.851 2.019

Anaerobic conditions
0 14.38 1.076 0.799 13.27
50 10.71 1.050 0.894 12.58

100 16.53 1.107 0.894 14.39

Higher Rct values indicated smaller corrosion rates and stronger corrosion resistance.
It can be seen from Table 2 that the Rct values are much larger under anaerobic conditions
than under aerobic conditions, which indicates that the reaction at the metal/solution
interface is much faster in the presence of oxygen. When the glutaraldehyde is added,
the Rct value decreases with the increase of glutaraldehyde under aerobic conditions,
which indirectly shows that the glutaraldehyde can further enhance the corrosion of steel
under aerobic conditions. The results noted above are consistent with the result of linear
polarization resistance.

3.4. Tafel Curves

Figure 6 shows the potentiodynamic polarization curves of samples under aerobic and
anaerobic conditions, and the fitting parameters of potentiodynamic polarization curves
are given in Table 3. It can be seen that the polarization curves, including anodic and
cathodic curves, are almost the same under anaerobic conditions, which indicates that
the addition of glutaraldehyde does not affect the reactions of anode and cathode. For
aerobic conditions, the polarization curves are different from those in the absence of oxygen,
especially for the conditions with glutaraldehyde. With the addition of glutaraldehyde,
the anodic curve shifts in the direction of lower current density, which means that the
anodic current densities are much smaller than those without glutaraldehyde, as shown
in Figure 6a, as the corrosion products formed on the steel surface increase the resistance
of the anodic reaction, leading to the decrease in anodic currents. Additionally, it can
be found from Table 3 that the Tafel slope of the cathode sharply decreases when the
glutaraldehyde is added. It indicates that the glutaraldehyde also changes the cathodic
reaction and increases the cathodic current densities (Figure 6a). This result indicates that
the addition of glutaraldehyde enhances the corrosion of steel by accelerating the cathodic
reaction. The fitting results show that the corrosion current density of steel is 11.72 µA/cm2
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under aerobic conditions and increases to 14.33 µA/cm2 with the addition of 100 ppm
glutaraldehyde. It can also be seen from Table 3 that the corrosion current densities are
much larger under aerobic conditions than under anaerobic conditions.
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Table 3. Electrochemical parameters fitted by the potentiodynamic polarization curves.

Condition Concentration
(ppm)

Ecorr
(mV)

icorr
(µA/cm2)

βc
(mV·dec−1)

βa
(mV·dec−1)

Aerobic Conditions
0 −742.9 11.72 468.1 66.1

50 −687.6 12.48 291.0 159.4
100 −686.8 14.33 216.0 143.4

Anaerobic Conditions
0 −742.7 5.467 324.6 76.5

50 −705.2 4.307 280.1 50.0
100 −739.3 6.565 307.1 60.6

3.5. Weight Loss

After 1 day, the corrosion rates of X80 pipeline steel with different concentrations of glu-
taraldehyde are shown in Figure 7. The corrosion rates of samples under aerobic conditions
were 0.168 mm/year (0 ppm), 0.192 mm/year (50 ppm) and 0.248 mm/year (100 ppm),
while those under anaerobic condition were 0.104 mm/year (0 ppm), 0.108 mm/year
(50 ppm) and 0.111 mm/year (100 ppm). It can be seen from the data that the glutaralde-
hyde can promote the corrosion of X80 pipeline steel under aerobic conditions, and the
corrosion rate of steel increases with increasing glutaraldehyde concentration. However,
the corrosion of glutaraldehyde is very slight under anaerobic conditions. The above results
indicate that the glutaraldehyde can be used in the studies of microbiologically influenced
corrosion and have few effects on the corrosive behaviors of metals. The weight-loss result
is in accordance with the electrochemical results.
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4. Conclusions

In this paper, the effect of glutaraldehyde on the corrosion behavior of X80 steel was
studied under aerobic and anaerobic conditions using weight loss tests, electrochemical
measurements, and SEM. The conclusions are as follows:

1. The SEM results show that there are corrosion products on the steel surfaces under
aerobic conditions, however, almost none under anaerobic conditions. The corrosion
products are Fe3O4, Fe2O3 and FeOOH under both aerobic and anaerobic conditions.

2. The weight-loss and electrochemical results show that the corrosion rates of steel
are much larger under aerobic conditions than under anaerobic conditions, and the
glutaraldehyde accelerates the corrosion of steel under aerobic conditions, but shows
few effects under anaerobic conditions.

3. The formation of corrosion products inhibits the anodic reactions of steel under
aerobic conditions, and the glutaraldehyde further enhances the cathodic reaction of
steel.

4. There are minor influences of glutaraldehyde on the corrosion of steel under anaerobic
conditions.
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