Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Gold Electrode QSM as a Chemical Gas Sensor
2.2. Deposition of the Plasma Polymer Sensing Films
2.3. NH3 Gas Probing Setup
- Gas module (GM) containing bottles with pure carrier gas (dry air), purge gas (N2) for cleaning the chamber before the measurement, and test gas (NH3). All gases used were free from water vapors;
- Gas mix and control module (GMCM), which includes two mass flow controllers (FC-260 and FC-280) and a mixing chamber;
- Test chamber (TC) with a Pt-thermo sensor (PS) and the mass sensitive QSM mounted inside
- Thermostat module (TM) for providing constant temperature inside the TC;
- Sensor oscillator and readout interface (SORI)
- Frequency counter (FC)
- Computer control and data acquisition system (CCDAS)
2.4. Surface Roughness Measurements
3. Results and Discussion
A Possible Explanation of the Plasma Modification Effect
- A.
- Modification can change the surface roughness of the sensing film, increasing the contact surface area and the penetration depth of the probing gas, which should enhance sensor sensitivity;
- B.
- Plasma modification with the gas of interest creates physical bonds to its molecules on the surface of the sensing film. This increases the film affinity to that same gas.
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yatsuda, H.; Nara, M.; Kogai, T.; Aizawa, H.; Kurosawa, S. STW gas sensors using plasma-polymerized allylamine. Thin Solid Film. 2007, 515, 4105–4110. [Google Scholar] [CrossRef]
- Ten, S.T.; Hashim, U.; Gopinath, S.C.B.; Liu, W.W.; Foo, K.L.; Sam, S.T.; Rahman, S.F.A.; Voon, C.H.; Nordin, A.N. Highly sen-sitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens. Bioelectron. 2017, 93, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.B.; Singh, H.; Nimal, A.; Sharma, M.; Tomar, M.; Gupta, V. Distinct detection of liquor ammonia by ZnO/SAW sensor: Study of complete sensing mechanism. Sens. Actuators B Chem. 2017, 238, 83–90. [Google Scholar] [CrossRef]
- Lamanna, L.; Rizzi, F.; Bhethanabotla, V.R.; De Vittorio, M. Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosens. Bioelectron. 2020, 163, 112164. [Google Scholar] [CrossRef] [PubMed]
- Grabka, M.; Jasek, K.; Pasternak, M. Application of polymethyl [4 -(2,3-difluoro-4-hydroxyphenoxy)butyl] siloxane in sur-face acoustic wave gas sensors for dimethyl methylphosphonate detection. Sens. Actuators B. Chem. 2021, 329, 129216. [Google Scholar] [CrossRef]
- Rapp, M.; Reibel, J.; Stier, S.; Voigt, A.; Bahlo, J. SAGAS: Gas Analyzing sensor systems based on surface acoustic wave devices—An issue of commercialization of SAW sensor technology. In Proceedings of the IEEE International Frequency Control Symposium, Orlando, FL, USA, 28–30 May 1997; pp. 129–132. [Google Scholar]
- Ritter, F.; Hedrich, J.; Deck, M.; Ludwig, F.; Shakirov, D.; Rapp, B.; Länge, K. Polymer Structures on Surface Acoustic Wave Biosensors. Procedia Technol. 2017, 27, 35–36. [Google Scholar] [CrossRef]
- Kus, F.; Altinkok, C.; Zayim, E.; Erdemir, S.; Tasaltin, C.; Gurol, I. Surface acoustic wave (SAW) sensor for volatile organic compounds (VOCs) detection with calix [4] arene functionalized Gold nanorods (AuNRs) and silver nanocubes (AgNCs). Sens. Actuators B Chem. 2021, 330, 129402. [Google Scholar] [CrossRef]
- Thomas, S.; Racz, Z.; Cole, M.; Gardner, J.W. Dual high-frequency Surface Acoustic Wave Resonator for ultrafine particle sensing. In 2013 IEEE SENSORS; Institute of Electrical and Electronics Engineers (IEEE): Baltimore, MD, USA, 2013; pp. 1–4. [Google Scholar]
- Avramov, I.D. Polymer Coated Rayleigh SAW and STW Resonators for Gas Sensor Applications. In Acoustic Waves—From Microdevices to Helioseismology; Marco, G.B., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 23; pp. 521–546. ISBN 978-953-307-572-3. Available online: www.intechopen.com/books/show/title/acoustic-waves-from-microdevices-to-helioseismology (accessed on 14 November 2011).
- Radeva, E.I.; Avramov, I.D. Humidity Sensing Properties of Plasma Polymer Coated Surface Transverse Wave Resonators. In Proceedings of the 1998 IEEE International Ultrasonics Symposium, Sendai, Japan, 5–8 October 1998; pp. 509–512. [Google Scholar]
- Stahl, U.; Voigt, A.; Dirschka, M.; Barié, N.; Richter, C.; Waldbaur, A.; Gruhl, F.J.; Rapp, B.E.; Rapp, M.; Länge, K. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors. Sensors 2017, 17, 2529. [Google Scholar] [CrossRef] [Green Version]
- Avramov, I.D.; Länge, K.; Rupp, S.; Rapp, B.; Rapp, M. Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007, 54, 157–166. [Google Scholar] [CrossRef]
- Avramov, I.; Kurosawa, S.; Rapp, M.; Krawczak, P.; Radeva, E. Investigations on plasma-polymer-coated SAW and STW resonators for chemical gas-sensing applications. IEEE Trans. Microw. Theory Tech. 2001, 49, 827–837. [Google Scholar] [CrossRef]
- Alemán, C.; Fabregat, G.; Armelin, E.; Buendía, J.J.; Llorca, J. Plasma surface modification of polymers for sensor applications. J. Mater. Chem. B 2018, 6, 6515–6533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolbasov, E.N.; Antonova, L.V.; Stankevich, K.S.; Ashrafov, A.; Matveeva, V.G.; Velikanova, E.A.; Yu, I.K.; Hodyrevskaya, Y.; Kudrysavtseva, A.; Anissimov, Y.G.; et al. The use of magnetron sputtering for the deposition of thin titaniumcoatings on the surface of bioresorbable electrospun fibrous scaffoldsfor vascular tissue engineering. A pilot study. Appl. Surf. Sci. 2017, 398, 63. [Google Scholar]
- Fan, Y.; Li, X.; Yang, R. The Surface Modification Methods for Constructing Polymer-Coated Stents. Int. J. Polym. Sci. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Rao, J.; Bao, L.; Wang, B.; Fan, M.; Feo, L. Plasma surface modification and bonding enhancement for bamboo compo-sites. Compos. Part B Eng. 2018, 138, 157–167. [Google Scholar] [CrossRef]
- Jang, H.; Jung, E.; Parsons, T.; Tae, H.-S.; Park, C.-S. A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions. Polymers 2021, 13, 2267. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Comotti, M.; Frigo, S. Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines. Int. J. Hydrog. Energy 2015, 40, 10673–10686. [Google Scholar] [CrossRef]
- Lin, T.H.; Li, Y.T.; Hao, H.C.; Fang, I.C.; Yang, C.M.; Yao, D.J. Surface acoustic wave gas sensors for monitoring low concentration ammonia. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1140–1143. [Google Scholar]
- Avramov, I.D.; Stahl, U. On the mass sensitivity of Rayleigh surface acoustic wave (RSAW) resonators. In 2017 40th International Spring Seminar on Electronics Technology (ISSE); Institute of Electrical and Electronics Engineers (IEEE): Sofia, Bulgaria, 2017; pp. 1–6. [Google Scholar]
- Georgieva, V.; Stefanov, P.; Spassov, L.; Raicheva, Z.; Atanassov, M.; Tincheva, T.; Manolov, E.; Vergov, L. Thin MoO3 films for sensor applications. J. Optoelectron. Adv. Mater. 2009, 11, 1363–1366. [Google Scholar]
- Esmeryan, K.D.; Avramov, I.D.; Radeva, E.I. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications. Micromachines 2012, 3, 413–426. [Google Scholar] [CrossRef]
- Radeva, E. A SEM Study of Plasma Polymerized Hexamethyldissiloxane Thin Films. Vacuum 1997, 47, 41–42. [Google Scholar] [CrossRef]
- MacGregor, M.; Vasilev, K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials 2019, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Tsankov, D.; Radeva, E.; Hinrichs, K.; Röseler, A.; Korte, E.-H. Infrared spectroscopic ellipsometry and atomic force mi-croscopy study of plasma polymerized hexamethyldisiloxane layers post-treated by NH3 plasma. Thin Solid Film. 2005, 476, 174–180. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Miu, D.; Viespe, C. Surface Acoustic Wave Sensors for Ammonia Detection at Room Temperature Based on SnO2/Co3O4 Bilayers. J. Sens. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Xie, D.; Lin, S.; Zhang, W.; Yang, Y.; Zhang, R.; Shi, X.; Wang, H.; Zhang, Z.; Zu, X.; et al. Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film. Sens. Actuators B Chem. 2021, 344, 130175. [Google Scholar] [CrossRef]
- Trajcheva, A.; Politakos, N.; Bertha, T.; Joseph, P.Y.; Gilev, J.B.; Tomovska, R. QCM nanocomposite gas sensors—Expanding the application of waterborne polymer composites based on graphene nanoribbon. Polymer 2021, 213, 123335. [Google Scholar] [CrossRef]
- Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663. [Google Scholar] [CrossRef]
- Caoa, J.; Wang, S.; Li, J.; Shang, Y.; Zhao, X.; Li, D. Porous nanosheets assembled Co3O4 hie archical architectures for enhanced BTX (Benzene, Toluene and Xylene) gas detection. Sens. Actuators B Chem. 2020, 315, 128120. [Google Scholar] [CrossRef]
SAW Sensing Technology | Frequency | Sensing Layer | Average Sensitivity | LOD | References |
---|---|---|---|---|---|
QSM | 432 MHz | PPHMDSO | 302 Hz/ppm | 0.1 ppm | This work |
QSM | 432 MHz | PPTES | 88 Hz/ppm | 0.3 ppm | This work |
SAW | 69 MHz | SnO2/Co3O4 | 2.00–3.33 Hz/ppm | 9–15 ppm | [29] |
SAW | 200 MHz | N-DLC | 3.3 KHz/ppm | 2 ppm | [30] |
QCM | 5 MHz | polymer/GNR nanocomposites | 1.5 Hz/ppm | under 70 ppm | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramov, I.; Radeva, E.; Lazarov, Y.; Grakov, T.; Vergov, L. Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications. Coatings 2021, 11, 1193. https://doi.org/10.3390/coatings11101193
Avramov I, Radeva E, Lazarov Y, Grakov T, Vergov L. Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications. Coatings. 2021; 11(10):1193. https://doi.org/10.3390/coatings11101193
Chicago/Turabian StyleAvramov, Ivan, Ekatherina Radeva, Yuliyan Lazarov, Teodor Grakov, and Lazar Vergov. 2021. "Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications" Coatings 11, no. 10: 1193. https://doi.org/10.3390/coatings11101193
APA StyleAvramov, I., Radeva, E., Lazarov, Y., Grakov, T., & Vergov, L. (2021). Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications. Coatings, 11(10), 1193. https://doi.org/10.3390/coatings11101193