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Abstract: The technique of Levenberg–Marquardt back propagation with neural networks (TLMB-
NN) was used in this research article to investigate the heat transfer of Maxwell base fluid flow of
nanomaterials (HTM-BFN) with MHD over vertical moving surfaces. In this study, the effects of
thermal energy, concentration, and Brownian motion are also employed. Moreover, the impacts of
a heat-absorbing fluid with viscous dissipation and radiation have been explored. To simplify the
governing equations from a stiff to a simple system of non-linear ODEs, we exploited the efficacy
of suitable similarity transformation mechanism. Through applicability of state-of-the-art Adams
numerical technique, a set of data for suggested (TLMB-NN) is generated for several situations
(scenarios) by changing parameters, such as the Thermophoresis factor Nt, Hartmann number M,
Eckert number Ec, concentration Grashoff parameter Gc, Prandtl number Pr, Lewis number Le,
thermal Grashof number GT, and Brownian motion factor Nb. The estimate solution of different
instances has validated using the (TLMB-NN) training, testing, and validation method, and the
recommended model was compared for excellence. Following that, regression analysis, mean square
error, and histogram explorations are used to validate the suggested (TLMB-NN). The proposed
technique is distinguished based on the proximity of the proposed and reference findings, with an
accuracy level ranging from 10−9 to 10−10.

Keywords: Maxwell fluid; MHD; boundary layer flow; Brownian motion; thermal radiation;
permeable medium; Levenberg–Marquard technique; neural network

1. Introduction

Artificial Neural Networks (ANNs) are a groundbreaking new AI (artificial intelli-
gence) technique. ANNs can grow in a variety of modes, depending on the data that flows
through the network throughout the learning process, whether internally or externally.

Coatings 2021, 11, 1483. https://doi.org/10.3390/coatings11121483 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-8295-9861
https://orcid.org/0000-0002-1027-7690
https://orcid.org/0000-0001-5769-4320
https://orcid.org/0000-0001-9953-822X
https://orcid.org/0000-0001-5263-4871
https://orcid.org/0000-0003-0196-0209
https://orcid.org/0000-0002-9855-5033
https://doi.org/10.3390/coatings11121483
https://doi.org/10.3390/coatings11121483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11121483
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings11121483?type=check_update&version=2


Coatings 2021, 11, 1483 2 of 26

To increase the performance of a Multilayer Perceptron (MLP) network, an artificial neu-
ral network uses the Back Propagation (BP) method to undertake simultaneous training.
It is the most widely used, effective, and simple-to-learn paradigm for complex multi-
layered networks. Paul Werbos, who created the back propagation method in 1974, was
the first to do so, while Rumelhart and Parker were the first to revive it (see ref. [1]). The
Levenberg–Marquardt methodology/algorithm (LMA) is an innovative convergent relia-
bility technique for artificial neural networks (ANNs) that provides a numerical solution
to a wide range of fluid flow issues. Several researchers have recently used this method
to examine mass and heat-transmission features, along with non-Newtonian fluid flow
systems. Raja, M.A.Z et al. [2] suggest neural networks approach with backpropagation to
analysis the 3D hall current of Cattaneo–Christov heat flux model relating biconvection
nanofluidic flow with Darcy–Forchheimer law influence. Shoaib et al. [3] investigated
the generation of entropy under the impact of MHD and thermal radiation using the
proficiency of neural networks. Khan et al. [4] used a Backpropagated neural network
optimized with Levenberg-Marquardt scheme (BNN-LMS) to investigate heat transport
between two permeable parallel plates of steady Nano fluids applying Thermophoresis
and Brownian impacts. To explain the third-order nonlinear scheme of Emden–Fowler
paradigm, Sabir et al. [5] examined computational intelligence methodology employing
Levenberg–Marquardt backpropagation neural networks. Using TLMB-NN based com-
putational intelligence, Uddin et al. [6] showed how to combine magnetic and radiation
effects to comprehend the investigation of Maxwell Nano liquid thin film stream across a
stretchy and spinning disc.

As the efficiency of appliances and thermal schemes is associated to heat-transfer
amounts, engineers and researchers have engaged on the issue of poor thermal conductiv-
ity and the subsequent weak heat-transmission factors proposed by convectional fluids,
for example, water, glycol, ethylene oil, etc. Choi [7,8] exposed and demonstrated that the
upmost-needed greater conducting liquid for improving the cooling scheme in maximum
engineering and industrial appliances can be accomplished by combining nanometer-sized
particles, for example, caused by carbides, carbon nanotubes, metals and oxides, etc.,
with conventional heat-transportation fluids. Various investigators have drawn to the
fascinating and expressive evaluation of Nano fluids due to the auspicious purposes for
example solid-state lighting, nuclear reactors, electronic appliances, safer surgery, and can-
cer therapy that might enhance heat-transfer competence for an improved cooling method
Nayak et al. [9]. Nano fluid characteristics like as viscosity and thermal conductivity have
a significant impact on heat-transmission rates, according to Sheikholeslami et al. [10].
As a result, the utilization of ultra-fine solid particles in fluids has affected significantly
the improvement of heat-transmission execution. According to Nima et al. [11], such a
variety develops in a more conductive heat-transfer liquid, which has uses in electronics,
transportation sectors, pharmaceutical sectors, biomedicine, atomic reactors, and power
manufacture, etc. According to Eastman et al. [12], the heat-absorption capacity of Nano flu-
ids is significantly higher than that of conventional fluids, with thermal conductivity rising
equal to 40% dependent on the size, shape, and thermal properties of solid nanomaterials.
Various thermophysical characteristics of Nano fluids have been investigated by many
researchers in relation to these important applications, as seen in references [13,14] and their
referred references. Concerning the flows in porous medium, the literature review displays
that countless explorations of curiosity have been done. In fluid-saturated porous media
the convective flow has been mainly inspired by its significant role in many natural and
industrial problems in recent studies of interest. The heat-transfer study of incorporating
the effects of porosity is significant. Keeping in view the porosity effects, Maleki et al. [15]
reported the analysis of nanoliquid over a porous radiative plate. In porous medium for
the problem of steady flow over a rotating disk, Mohimanian and Rashidi [16], used the
HAM, involving two auxiliary parameters for the analytic estimated solution.

A lot of consideration has been given in recent years for the study of boundary layer
flow of magneto hydrodynamics (MHD) and heat transfer owing to its uses in engineering
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and manufacturing. Pavlov et al. [17] investigated MHD boundary layer flow of an
electrically conducting fluid in the existence of a constant transverse magnetic field, and
Chakrabarti and Gupta et al. [18] expanded the study to include heat transmission and
hydro magnetic flow. Several researchers have approved the exploration of the MHD
influence on Nano fluids. Shagaiya Daniel et al. [19] studied that optical grafting, metal
casting, crystal growth, metallurgical process, tunable optical fiber filters, the polymer
industry, liquid metal cooling blankets for fusion reactors, and including the stretching
of plastic sheets are just a few of the many uses of MHD. In a magnetic area, MHD is
concerned with the movement of an electrically behaving fluid, which has the potential to
regulate the system’s flow and heat transmission.

The magnetic field, when applied to nanofluids, magnetizes the flow, creating magneto–
hydrodynamic flow. The MHD flow under the influence of thermal radiation has always
been an interesting area for the researcher. The MHD flow studied the involvement
between the electrically conductive fluid and magnetic field. Thermal radiation affects
the concentration of molecules and enhances the temperature by increasing energy and
molecular movement.

The primitive studies showing anomalous improvements in nanofluid thermal proper-
ties over those of the base fluid, specifically the heat-transfer coefficient, have been largely
discredited. Thermophysical properties of nanofluid are not designated via classical theo-
ries due to their conventional suspensions. Measurements of the thermophysical properties
of nanofluids impart only integral information about their transport processes and, as
a rule, do not clarify the mechanisms of these processes. The mechanisms of transport
processes were studied using the molecular dynamics method. Furthermore, the densities
of the nanoparticles material play an important role in the improvement of the thermal
conductivities of the nanoparticles. Moreover, the heat-transfer coefficient of the nanoparti-
cles is of great importance due to concentration of the particles involved the fluid. It can
accelerate the heat-transfer system in the nanofluids as compared to base fluid [20–22].

The esteem of the Maxwell fluid, which is appropriate to the rate of those kinds of
fluids, is owing to its simplicity and ability to anticipate stress relaxation, as well as its
tremendous behaviour in engineering and trade activity, particularly in the polymer areas.
The research of [23–25] provides appropriate information about Maxwell fluid. Various
researchers have been interested in the flow issues with a stable or continually moving flat
plate since the past century, because it has numerous technical applications in disciplines
such as aerodynamics, naval architecture, and so on. Applying boundary layer theory,
Sakiadis [26] investigated the flow through a continually moving flat plate. Merkin [27]
explored free stream flow across a vertical flat surface, including the impacts of buoyancy
forces. Wilks [28] explained above a fixed flat upright surface the constant free stream
flows in the semi-infinite field. Ghalambaz et al. [29] analyzed the mixed convection
boundary layer flow and heat transfer over a vertical plate embedded in a porous medium
filled with a suspension of nano-encapsulated phase change materials. Similarly, S.A.M.
Mehryan et al. [30] explained the natural convection flow of a suspension containing
nano-encapsulated phase change particles in an eccentric annulus. Because of buoyancy
forces, the flow develops, and a continuous heat flux is delivered to the stationary upright
plate. Bachok et al. [31] explained the heat-transmission research of a comparable free
stream flow owing to a sliding flat permeable plate. By using boundary layer estimation,
Sadeghy et al. [32] analyzed the Maxwell fluid flow across a moving flat plate. Damseh [33]
reported the flow of viscoelastic fluid across an infinitely porous perpendicular flat plate
with first-order chemical effects. Nadeem et al. [34] explained the MHD Maxwell Nano
fluid flow across a flat plate in motion. With boundary coating estimations, Zhao et al. [35]
addressed the unsteady naturally convected Maxwell fluid flow through a perpendicular
uniform surface. Utilizing boundary layer theory, Bhatti et al. [36] investigated MHD Nano
fluid flow through a porous stretched cylinder, as well as the impacts of heat radiation and
chemical reactivity. With boundary coating flow assumptions, Bachok et al. [37] explained
the Nano fluid flow owing to a uniform moving surface. Employing boundary layer theory,
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we show the flow of magneto hydrodynamics Maxwell Nano fluid across an upright
moving uniform permeable plate with impacts of heat and concentration buoyancy. With
radiation and viscous dissipation results, heat-absorbing fluids have deliberated.

Because finding an accurate solution to a problem analytically might be challenging,
the investigator uses a combination of numerical and semi-numerical approaches to solve
the problem. The Method of Spectral Relaxation [38], HPM [39], Keller Box Method [40],
Galerkin finite element method [41], and many others are examples of approaches. All
of the mentioned literature on Nano fluid flow for many fluidic systems was formed
exploiting and utilizing various numerical and semi-numerical methodologies; however,
AI-based numerical computing paradigms are critical to using HTM-BFN model, i.e.,
to investigate the heat transmission of Maxwell base fluid flow of nanomaterials with
MHD above perpendicular moving surfaces. Evolutionary estimation approaches are
used in stochastic numerical calculating solvers connected to neural networks to get the
solutions/outcomes of differential equations for linear and non-linear, exhibiting different
measurements of various circumstances. The engagement of these approaches comprises
COVID-19 Models [42,43], mosquito dispersal model [44], atomic physics [45], magneto
hydrodynamics [46,47], Emden Fowler system [48,49], thermodynamics [50], nonlinear
corneal shape model [51], nanotechnology [52], and flow model of non-linear unipolar
electro hydrodynamic pump [53]. All of these inspiring features boost investigators to use
a reliable and perfect AI algorithm-based numerical computational model for numerical
exploration of the Magneto-hydrodynamic Nano-fluid mathematical paradigm by using
numerical and graphical analyses to examine the influence of all variations or physical
gauges on velocity, concentration, and temperature profiles. MATLAB and Mathematica
tools are used to simulate numerical behavior.

The following are the prominent aspects of the proposed design-computing methodology:

• A new AI-based intelligent computing methodology via Levenberg–Marquardt back
propagation with neural networks (TLMB-NN) is used to viably explore the solution
dynamics for the heat transfer of Maxwell base fluid flow of nanomaterials (HTM-BFN)
with MHD;

• By providing the required equivalent modification, the mathematical modeling of
the novel design HTM-BFN in expressions of PDEs has transformed to similar non-
linear ODEs;

• Based on Hartmann number, Grashof numbers, concentration Grashoff factor, Lewis
number, Brownian motion factor, Thermophoresis factor, Eckert number, Prandtl
number, and other characteristics, the Adam’s solver is exploited to build a dataset for
the designed TLMB-NN as an alternative to the dynamic of HTM-BFN;

• Modeling HTM-BFN for various scenarios by employing the TLMB-NN testing, vali-
dation, and training samples based procedures, and evaluation with orientation results
rationalizes its perfection; and

• The applicability of the suggested TLMB-NN to successfully represent the HTM-BFN
model has supported by convergence graphs of calculated MSE, fitness, histograms,
and regression metrics.

The subsequent research has been classified as follows: the interpretation and conse-
quences of the HTM-BFN model problem are described in Section 2; Section 3 presents
the solution approach as well as the impacts of the recommended TLMB-NN on numer-
ous HTM-BFN alternatives; and Section 4 concludes with concluding observations and
probable future study.

2. Mathematical Interpretation and Flow Assessment

Owing to a vertically moving flat permeable surface, we investigated the laminar,
two-dimensional boundary coating flow of magneto hydrodynamics Maxwell nanofluid.
The x-axis is parallel to the vertically moving flat plate, while the y-axis is orthogonal
to it. Concentration and thermal buoyancy are other key factors. As consequences with
thermal radiation and viscous dissipation, the fluid has been assumed to be heat absorbing.
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The fluid has given an unrestricted stream velocity Ue(x), and the velocity Uw(x), to the
normally moving surface is given. The pattern of flow is presented via Figure 1. The
dimensional boundary layer equations are given as [54].

∂u
∂x

+
∂v
∂y

= 0, (1)

u ∂u
∂x + v ∂u

∂y + λ(u2 ∂2u
∂x2 + v2 ∂2u

∂y2 + 2uv ∂2u
∂x∂y = − 1

ρ
∂p
∂x

+υ
(

∂2u
∂y2

)
− uB2

0σ
ρ + g0βT

(
T − T∞

)
+ g0βc

(
C− C∞

)
,

(2)

(
u ∂T

∂x + v ∂T
∂y

)
= α

(
∂T
∂y

)2
+ µB

(ρCP) f

(
∂u
∂y

)2
+ 16a∗

3k∗
T3

∞
(ρCP) f

× ∂2T
∂y2 + τ

(
DB

∂T
∂y

∂C
∂y +

(
∂T
∂y

)2
)
− Q0

(ρCP) f
(T − T∞),

(3)

u
∂C
∂x

+ v
∂C
∂y

=

(
∂2T
∂y2

)
DT

T∞
+

∂2C
∂y2 DB. (4)
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Figure 1. Flow geometry for HTM-BFN model with MHD.

In terms of boundary conditions,

u = Uw(x), v = Vw(x), T = Tw, C = Cw, at y = 0
u → Ue(x), T → T∞, C → C∞, at y→ ∞,

(5)

where the wall dimensional velocity is Uw(x), and Vw(x) is dimensional mass flux velocity
where for injection Vw(x) > 0, and for suction Vw(x) < 0. The wall dimensional tempera-
ture and concentration are Tw, Cw. The temperature, concentration and dimensional free
stream velocity are T∞, C∞, Ue(x) respectively.



Coatings 2021, 11, 1483 6 of 26

Equation (2) gives outside the boundary layer:

− 1
ρ

dp
dx

= λU2
e

d2Ue

dx2 + U
dUe

dx
+

σB2
0

ρ
Ue, (6)

Following are the variables in the boundary layer with no dimensions are:

x = x
L , y = R

1
2
e

(
y
L

)
, u = u

U0
, v = R

1
2
e

(
v

U0

)
,

ue(x) = Ue(x)
U0

, uw(x) = Uw(x)
U0

, vw(x) = R
1
2
e

Vw(x)
U0

,

θ = T−T∞
Tw−T∞

, φ = C−C∞
Cw−C∞

, p = p−p∞
ρ f U2

0
,

(7)

where the characteristic velocity is U0. We get the following system of equations by merging
Equations (6) and (7):

∂u
∂x

+
∂v
∂y

= 0, (8)

u ∂u
∂x + v ∂u

∂y + λU0
L

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv ∂2u

∂y∂x

)
−
(

λU0
L

)
u2

e
d2ue
dx2 − ue

due
dx = + ∂2u

∂y2 +

(
σB2

0 L
ρU0

)
(ue − u)

+(Tw − T∞) g0βT L
U2

0
θ + (Cw − C∞) g0βc L

U2
0

φ,

(9)

u ∂θ
∂x + v ∂θ

∂y = 1
Pr

∂2θ
∂y2 +

U2
0

Cp(Tw−T∞)

(
∂u
∂y

)2

+ 4R
3Pr

∂2θ
∂y2 +

∂φ
∂y

∂θ
∂y Nb + Nt

(
∂θ
∂y

)2
− Q0L

(ρCp) f
θ,

(10)

u
∂φ

∂x
+ v

∂φ

∂y
=

1
Pr

(
1
Le

∂2φ

∂y2 +
NT

NbLe

∂2θ

∂y2

)
. (11)

The dimensionless boundary conditions have obtained by applying Equation (7) in
Equation (5):

u = uw(x), v = vw(x), θ = 1, φ = 1, at y = 0
u → ue(x), θ → 0, φ→ 0, as y→ ∞ .

(12)

We suppose that uw(x), and ue(x), have the subsequent structure uw(x) = Uwx
1
3 , and

ue(x) = Uex
1
3 , where the dimensionless constants are Uw, Ue. The similarity transforma-

tions are introduced here as:

ψ = U
1
2
e x

2
3 f (η), η = U

1
2
e x−

1
3 y, θ = g(η),

φ = h(η), u = ∂ψ
∂y , v = − ∂ψ

∂y ,
(13)

Thus, we get vw(x) = − 2
3 U

1
2
e x−

1
3 s, where dimensionless transpiration parameter

is s, and the suction and injection cases are given by s > 0, s < 0, correspondingly.
Equations (8)–(12) yield the form, after manipulating the similarity transformations given
in Equation (13),

3
(

f ′2 − 1
)
− 6 f f ′′ + 2β

(
η f ′2 f ′′ + 1− f ′3 + 2 f ′′′ f 2

)
−9((M(1− f ′) f ′′′ + GT g + Gch) = 0,

(14)

1
Pr

(
1 +

4R
3

)
g′′ + Ec f

′′2 + h′g′Nb + g′2Nt +
2
3

f g′ − Hg = 0, (15)
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h′′ + g′′
Nt

Nb
+

2
3

LePr f h′ = 0. (16)

Their relative boundary conditions are given as:

f (η) = s, h(η) = 1, g(η) = 1, f ′(η) = γ, at η = 0

f ′(η) = 1, g(η) = h(η) = 0, as η → ∞,

}
(17)

where for moving flat plate γ = Uw
Ue

, is non-dimensional factor. If free stream and moving
flat surface are parallel, then γ > 0, but, if not parallel, then γ < 0, and for plate at rest
γ = 0. The dimensionless parameters are specified as under:

M =
LB2

0σ

U0Uex−
2
3 ρ

, β = λU0Uex−
2
3

L , Gc =
βc Lg0(Cw−C∞)

U2
0 U2

e x−
2
3

,

GT = βT Lg0(Tw−T∞)

U2
0 U2

e x−
2
3

, Le =
α

DB
, Pr =

υ
α , Nt =

τ(Tw−T∞)DT
υT∞

,

Nb = τ(Cw−C∞)DB
υ , Ec =

U2
0 U2

e
Cp− 2

3 (Tw−T∞)
,

H = Q0L

U0Uex−
2
3 (ρCp) f

, R = 4σ∗T3
∞

k f k∗

(18)

where M is the Hartmann number, β denote the Deborah number, Gc and GT represent
the concentration and thermal Grashoff parameters, Le denote the Lewis number, Pr
show the Prandtl number, Nt and Nb represent the Thermophoresis and Brownian motion
parameters, Eckert number is indicated by Ec, H display the heat-absorption factor, and R
signify the Radiation parameter. The Nusselt number Nux, is specify as:

Nux =
xqw

k(Tw − T∞)
,

where

qw = −k
(

1 +
16σ∗T3

∞
3k∗k f

)(
∂T
∂y

)
y=0

,

And

Re−
1
2

x Nux = −
(

1 +
4R
3

)
g′(0).

the Sherwood quantity is expressed as:

Shx =
xhm

DB(Cw − C∞)
,

where, hm = −DB

(
∂C
∂y

)
y=0

, and Re−
1
2

x Shx = −h′(0).

In above qw, hm are the mathematical representations, which describe the heat slope
of wall and mass of wall incline, correspondingly.

3. Solution Methodology

In the shape of a neural network structure, Figure 2 displays the suggested TLMB-
NN model. The suggested TLMB-NN is accomplished by operating ‘nf tool’, i.e., in Mat
lab’s neural network (NN) toolbox, setting a procedure for fitting NN tools, whereas the
Levenberg–Marquardt with backpropagation is concluded, finding out the weight of neural
networks. In Figure 3a, the suggested TLMB-NN model and the mathematical model along
with concern geometry have displayed and in Figure 3b the overall elaboration of flow
demonstration has presented, while the necessary details of the size and structure of the
networks is tabulated in Table 1.
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For fixed values of βD = 0.5, R = 0.6, and H = 0.3 are exercised for the variation
of distinct parameters M, GT , Gc, Nt, Nb, Ec, Le, and Pr respectively, with four cases of
HTM-BFN model, individually. With replacements for all alternatives, as stated in Table 1,
the suggested TLMB-NN is operated to solve differential Equations (14)–(16) of the flow
paradigm for eight scenarios, exploiting the Adams numerical solver method [55–57]; that
is in Mathematica software the command ‘Nonlinear differential system (ND Solver)’ is ex-
ercised with time interval 0.01 to generate dataset of TLMB-NN for inputs between 0 and 2
as deliberate below in Tables 1 and 2. With a set of 10 hidden neurons, for training 80% data
values, 10% individually for validation and testing the solutions for f ′, g and h for 201
input points are informally scattered.
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Table 1. Size and structural details of the networks.

Index Description

Layer structure One input, one output, and one hidden layer

Hidden neuron 10–20

Validation 10-fold cross validation

Input grid 201 points

Output grid 16 × 201 points

Training samples 80%

Validation samples 10%

Testing samples 10%

Leaning methodology Levenberg–Marquardt

Label target data Created with Adams numerical method

Table 2. Scenarios interpretation beside with cases for HTM-BFN model with MHD.

Scenarios Cases
Physical Quantities of Concern

M GT Gc Nb Nt Ec Le Pr

1

C1 0.1 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C3 0.5 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C4 0.7 0.2 0.2 0.1 0.1 0.3 0.3 6.5

2

C1 0.3 0.1 0.2 0.1 0.1 0.3 0.3 6.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C3 0.3 0.3 0.2 0.1 0.1 0.3 0.3 6.5

C4 0.3 0.4 0.2 0.1 0.1 0.3 0.3 6.5

3

C1 0.3 0.2 0.1 0.1 0.1 0.3 0.3 6.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C3 0.3 0.2 0.3 0.1 0.1 0.3 0.3 6.5

C4 0.3 0.2 0.4 0.1 0.1 0.3 0.3 6.5

4

C1 0.3 0.2 0.2 0.2 0.1 0.3 0.3 6.5

C2 0.3 0.2 0.2 0.4 0.1 0.3 0.3 6.5

C3 0.3 0.2 0.2 0.6 0.1 0.3 0.3 6.5

C4 0.3 0.2 0.2 0.8 0.1 0.3 0.3 6.5

5

C1 0.3 0.2 0.2 0.1 0.3 0.3 0.3 6.5

C2 0.3 0.2 0.2 0.1 0.5 0.3 0.3 6.5

C3 0.3 0.2 0.2 0.1 0.7 0.3 0.3 6.5

C4 0.3 0.2 0.2 0.1 0.9 0.3 0.3 6.5

6

C1 0.3 0.2 0.2 0.1 0.1 0.1 0.3 6.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C3 0.3 0.2 0.2 0.1 0.1 0.5 0.3 6.5

C4 0.3 0.2 0.2 0.1 0.1 0.7 0.3 6.5
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Table 2. Cont.

Scenarios Cases
Physical Quantities of Concern

M GT Gc Nb Nt Ec Le Pr

7

C1 0.3 0.2 0.2 0.1 0.1 0.3 0.1 6.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C3 0.3 0.2 0.2 0.1 0.1 0.3 0.5 6.5

C4 0.3 0.2 0.2 0.1 0.1 0.3 0.7 6.5

8

C1 0.3 0.2 0.2 0.1 0.1 0.3 0.3 5.5

C2 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6

C3 0.3 0.2 0.2 0.1 0.1 0.3 0.3 6.5

C4 0.3 0.2 0.2 0.1 0.1 0.3 0.3 7

4. Results and Discussion

The TLMB-NN outcomes for the HTM-BFN model have been shown in Figures 4–9
for different circumstances (scenarios) (1 to 8). Figures 4–6 show the outcomes of eight
scenarios in terms of performance and transition phases: M, GT , Gc, Nt, Nb, Ec, Le, and
Pr. The fitting plots and error histograms in Figures 7–9 were stated in terms of solution
with error for four distinct situations, however, the regression estimations exhibited for
four unique HTM-BFN model with MHD, collections in Figures 10–12. In addition, for
every HTM-BFN model scenario, Table 3 lists the convergence achieve parameter in terms
of mean square error (MSE), execution, performed period, performance duration, back
propagation, and temporal complexity gauges for scenarios 1 to 8.

In Figure 4a,c,e, Figure 5a,c,e and Figure 6a,c,e for test processes, the convergence of
MSE, validation, and training progressions for eight scenarios of the HTM-BFN model with
MHD are considered. MSE nearby 9.7 × 10−10, 8.16 × 10−10, 1.41 × 10−9, 4.24 × 10−9,
4.91 × 10−7, 6.51 × 10−9, 1.03 × 10−9, and 2 × 10−9, with epochs 274, 245, 433, 574, 402,
486, 371, and 282, correspondingly, provided the finest network performance. The lower
the MSE number, the more precise and effective the performance of the given approach
may be. The estimates of step size Mu and Levenberg–Marquardt gradient are com-
pactly (10−8, 10−8, 10−8, 10−8, 10−6, 10−8, 10−9, and 10−8) and (9.98 × 10−8, 9.97 × 10−8,
9.98 × 10−8, 9.98 × 10−8, 5.43 × 10−6, 1.01 × 10−6, 2.54 × 10−6, and 9.97 × 10−8) are pre-
sented in Figure 4b,d,f, Figure 5b,d,f and Figure 6b,d,f. The aforesaid outputs and graphi-
cal validations identify the authenticity that TLMB-NN is efficient, precise, and convergent
for each case of HTM-BFN paradigm.

Figures 7–9 demonstrate the effectiveness of the HTM-BFN model by comparing the
generated outcomes of eight different scenarios for inputs ranging from 0 to 2 with a step
range of 0.01 to reference numerical Adams method outcomes and related outcomes, as
well as the error dynamics plot. The highest error for test, train, and validation gauges
achieved through suggested TLMB-NN for eight scenarios of the design paradigm is less
than 9 × 10−10, 8 × 10−10, 1 × 10−9, 4 × 10−9, 4 × 10−7, 7 × 10−9, 2 × 10−9, and 2 × 10−9,
while the error dynamics and outcomes of HTM-BFN model for eight detached scenarios is
also inspected for every input point aside from error histograms are shown in Figures 7–9,
correspondingly. The average value of error bin about comparison zero line has error nearby
for eight distinct situations of the HTM-BFN model −1.4 × 10−6, 3.06 × 10−6, 5.98 × 10−6,
−6.3 × 10−6, 2.6 × 10−4, −1.6 × 10−5, −1.2 × 10−6, and 4.07 × 10−6. Correlation analyses
have frequently used to summarize the analysis inside regression analyses. Figure 10
through Figure 13 show the impacts of the HTM-BFN model’s eight related alternatives.
The correlation R-values are continuously near to unity, implying that the optimal value
for training, testing, and validation for precise modeling is close to unity, which explains
how effectively TLMB-NN resolves the HTM-BFN model.
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Furthermore, the associated numerical data in Table 3 demonstrate that MSE per-
formance for the suggested TLMB-NN technique is approximately 10–10 for various
HTM-BFN model situations (1 to 8). The numerical results in Table 3 demonstrate that,
while solving the HTM-BFN model, TLMB-NN executions are sound.

The effects of TLMB-NN are shown in Figures 14–16, respectively, for velocity dis-
tribution f ′(η), temperature distribution g(η), and concentration distribution h(η) for all
eight scenarios of the (HTM-BFN) paradigm. In Figure 14a,c,e, the influence of velocity
profile f ′(η) on the variation of Hartmann number M, thermal Grashoff parameter GT and
concentration Grashoff parameter Gc for scenarios 1, 2, and 3 of the (HTM-BFN) model
is measured; on the other hand, in Figure 14b,d,f, the related values of AE are plotted in
order to attain the performance of the HTM-BFN model approach.
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Figure 14a,c,e illustrates graphs of velocity versus various physical parameter values.
As seen in Figure 14a–c, the velocity increases in magnitude by increasing the values
of M, GT and Gc. Figure 14a depicts the alteration in Hartmann number for velocity
distribution. When the magnetic field’s effect is increased, the flow accelerates, causing
the velocity distribution to accelerate. The influence of thermal Grashof number GT and
concentration Grashoff parameter Gc on velocity distribution is explained in Figure 14c,e,
and we detect that the velocity increases when GT and Gc magnitudes escalate. There
might be some overlapping between the reference and proposed solutions. As a conclusion,
for scenarios (4, 5, and 6) of the HTM-BFN model, Figure 15a,c,e illustrate the results of
different magnitudes for Brownian motion parameter Nb, Thermophoresis parameter Nt,
and Eckert number Ec for temperature profile g(η). In Figure 15b,d,f the appropriate values
of AE are determined. As demonstrated in Figure 8a,c, both the parameters Nb and Nt have
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the same influence on the temperature distribution, as temperature rises with improving
values of these parameters. Furthermore, due to thermophoresis and Brownian motion,
the temperature is increased by adding more heating when the nanoparticles and fluid
reach a specific point. As a result, the thermal barrier layer thickens, increasing Nt and Nb
values, and the temperature near the permeable sheet swiftly rises. As the Eckert number
Ec has been raised, the temperature profile accelerates, as seen in Figure 8e. Moreover,
the results reveal a consistent overlap between the recommended and reference outcomes.
For scenarios 7 and 8, Figure 16a,c depicts the impact of the concentration profile h(η) for
various values of physical parameters, however, Figure 16b,d depicts the suitable value of
AE. Figure 9a,c shows that raising the Lewis number Le and the Prandtl number Pr lowers
the concentration profile h(η). This observation also demonstrates that the suggested and
reference solutions are always overlapping.

Table 3. Outcomes of TLMB-NN for eight scenarios (HTM-BFN model) with MHD.

Scenarios
MSE Level

Execution Gradient Mu Epoch Time
Training Validation Testing

M 9.249 × 10−10 9.709 × 10−10 7.092 × 10−10 9.25 × 10−10 9.99 × 10−8 1.00 × 10−8 274 12

GT 1.039 × 10−9 8.169 × 10−10 1.380 × 10−9 1.04 × 10−9 9.97 × 10−8 1.00 × 10−8 245 12

Gc 1.677 × 10−9 1.417 × 10−9 1.742 × 10−9 1.68 × 10−9 9.99 × 10−8 1.00 × 10−8 433 32

Nb 3.9720 × 10−7 4.248 × 10−9 4.092 × 10−9 3.97 × 10−9 9.98 × 10−8 1.00 × 10−8 574 31

Nt 4.607 × 10−7 4.918 × 10−7 4.232 × 10−7 4.61 × 10−7 5.43 × 10−6 1.00 × 10−6 402 29

Ec 7.368 × 10−9 6.517 × 10−9 6.931 × 10−9 7.37 × 10−9 1.02 × 10−6 1.00 × 10−8 486 20

Le 1.883 × 10−9 1.031 × 10−9 2.151 × 10−9 1.88 × 10−9 2.54 × 10−9 1.00 × 10−10 371 27

Pr 1.931 × 10−9 2.014 × 10−9 2.113 × 10−9 1.93 × 10−9 9.98 × 10−8 1.00 × 10−8 282 12
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Figure 14. Evaluation of suggested TLMB-NN with outcomes of reference dataset for Scenarios 1–3 of HTM-BFN model
with MHD.
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For all eight scenarios, the findings of TLMB-NN paired with conventional Adam
numerical solutions, so the absolute error was revealed to approach the precision mea-
surements from suggestion solutions, and the results are exhibited in Figure 14b,d,f and
Figure 15b,d,f for scenarios 1, 2, 3, 4, 5, and 6, together with subgroups 16 (b, d) for sce-
narios 7 and 8. For velocity profile, the AE achieve values for scenarios 1, 2, 3 are 10-6 to
10-4, 10-7 to 10-4, and 10-7 to 10-4, respectively, as shown in Figure 14b,d,f. While values
for scenario 4, 5, and 6 in Figure 15b,d,f for temperature profile are approximately 10-7 to
10-4, 10-8 to 10-2, and 10-8 to 10-4. Likewise, the AE achieves values 10-7 to 10-4 and 10-7
to 10-4 for scenarios 7 and 8 for the concentration profile shown in the subgroup 16 (b,d).
The TLMB-NN computing approach solves HTM-BFN model variations with sufficient,
convergent, and vigorous productivity in all of these numerical and graphical examples.
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In the boundary conditions for moving flat plate, γ = Uw
Ue

, is the non-dimensional
parameter. Here γ is positive when the free stream and moving flat surface are parallel then
but, if not parallel, then γ is negative and for the plate at rest γ it will be zero. Similarly,
s is the dimensionless transpiration parameter. For the suction and injection cases, s is
specified by s > 0, s < 0, respectively.

5. Conclusions

The influence of Maxwell base fluid flow of heat transfer of nanomaterials with MHD
above perpendicular moving surfaces has been investigated computationally in this re-
search, using the HTM-BFN model with MHD. The solution of a mathematical model
exhibiting HTM-BFN with change of specific circumstances (scenarios) has examined
using the Levenberg–Marquardt neural networks approach with backpropagation pro-
cedure. The form of PDEs describing the transformation of a mathematical flow into a
scheme of non-linear ODEs employing suitable similarity variables conversion system.
The Adams numerical approach has operated to generate the dataset for the HTM-BFN
model, including deviations of several physical measurements like Hartmann number,
Grashof number, Prandtl number, Brownian motion, and thermophoresis parameters. The
HTM-BFN reference dataset is created by modifying different variants, with 80%, 10%, and
10% of the dataset being used for TLMB-NN training, testing, and validation, respectively.
The scheme’s excellent performance is observed through the matching of suggested and
reference results around 10−9 to 10−10, along with graphical and numerical illustrations of
error histogram plots of convergence, regression dynamics, and mean square errors.

In future, to solve fluid mechanics problems [58–61] and a collection of computer
virus propagation models in the networks [62,63], and information security [64]; the
TLMB-NN design and its latest improved types could be used effectively. Similarly, in
forthcoming studies the authors intend to work on the mathematical modelling of the
problems involving the boundary layer theory, according to the suggested correct shapes
of velocity and temperature profiles [65,66]. Moreover, the proposed AI-based intelligent
computing methodology using neural networks with deep learning is definitely helpful
for learning the physical dynamics of conduction heat transfer more efficiently, reliably,
and effectively.

Author Contributions: Conceptualization: M.S., R.A.K. and H.U.; Writing—original draft prepara-
tion: M.S., R.A.K., H.U., M.A.Z.R., K.S.N. and S.I.; Software: M.S., R.A.K., H.U., M.A.Z.R., K.S.N.
and S.I.; Methodology: R.A.K., H.U., M.A.Z.R. and S.I.; Formal analysis: K.S.N., B.F.F. and I.S.Y.;
Writing—review and editing: M.S., R.A.K., K.S.N., B.F.F. and I.S.Y.; Funding acquisition: B.F.F. and
I.S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work received funding from King Khalid University, Ministry of Education and Taif
University, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their appreciation to the Deanship of Scientific Research
at King Khalid University for funding this work through the research groups program under grant
number R.G.P.2/111/41. Also, the authors extend their appreciation to the Deputyship for Research
& Innovation, Ministry of Education, in Saudi Arabia for funding this research work through the
project number: (IFP-KKU-2020/9). Bassem F. Felemban acknowledges Taif University Researchers
Supporting Project number (TURSP-2020/260), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Coatings 2021, 11, 1483 24 of 26

Nomenclature

x, y (m) Cartesian coordinate system GT Thermal Grashof number
υ (m2 s−1) Kinematic viscosity GC Concentration Grashoff parameter
qw (wm−2) Surface heat flux R Radiation parameter
σ* Stefann Boltzman constant Pr Prandtl number
DB Brownian diffusion coefficient EC Eckert number
Le Lewis number k* Coefficient of Mean absorption
Nt Thermophoresis factor Nb Brownian motion parameter

β Deborah number
hm Surface mass flux
(kgs−1 m−2)

Uw, Ue Dimensionless constants U0 Characteristic velocity
H Heat absorption factor Nux Nusselt number

DT
Thermophoretic diffusion

MSE Mean square error
coefficient

MHD Magnetohydrodynamics ANN Artificial neural networks
ODEs Ordinary differential equations PDEs Partial differential equations
HTM- Heat transfer of Maxwell base TLMB- Technique of Levenberg–
BFN fluid flow of nanomaterials NN Marquardt back propagation

with neural networks
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