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Abstract: In this work, a machine learning technique based on a regression tree model was used
to model the surfactant enhanced drying of poly(styrene)-p-xylene coatings. The predictions of the
developed model based on regression trees are in excellent agreement with the experimental data.
A total of 16,258 samples were obtained through experimentation. These samples were separated
into two parts: 12,960 samples were used for the training of the regression tree, and the remaining
3298 samples were used to test the tree’s prediction accuracy. MATLAB software was used to grow
the regression tree. The mean squared error between the model-predicted values and actual outputs
was calculated to be 8.8415 × 10−6. This model has good generalizing ability; predicts weight loss
for given values of time, thickness, and triphenyl phosphate; and has a maximum error of 1%. It is
robust and for this system, can be used for any composition and thickness for this system, which will
drastically reduce the need for further experimentations to explain diffusion and drying.

Keywords: poly(styrene); p-xylene; thin films; drying; surfactant enhanced drying; modeling; ma-
chine learning; regression tree

1. Introduction

Polymeric coatings are an important part of a variety of industries, including textiles,
electronics, automobiles, and food etc. [1,2]. They are the protective layers that are used to
extend the life of a material or surface by shielding it from moisture and preventing cracks.
Polymeric coatings are produced by applying a polymeric solution on a substrate. In the
manufacturing of polymeric coatings, numerous organic solvents are used, which can be
harmful and cause damage to the environment. Water-based coatings, rather than organic-
based coatings, are more extensively used nowadays to develop biocompatible and eco
sustainable coatings. The formulation costs of water-based coatings are significantly higher
than those of organic-based coatings due to the prolonged drying period of water-based
coatings. The slow drying rate of water-based coatings is due to the non-volatility of water
compared to organic solvents, which ultimately necessitates a larger amount of energy.

Most of the commercial polymers used in coatings have some crystalline composition
in order to provide better strength and rigidity. Glassy polymer coatings play an important
role in everyday life. A feasible way to produce glassy polymer coatings is solution casting
followed by drying. The production of glassy coatings by drying is a complicated process
as it includes coupled heat and mass transfer with a moving boundary as well as phase
transitions such as sol–gel transition and transformation from the rubbery phase to glass
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state [3]. This complication is further increased by the addition of surfactants in the drying
mixture in order to further enhance drying.

The drying rate of these coatings can be improved by introducing surface-active agents
to a binary solution [4]. Water-based coatings require surfactants to reduce the free energy
in the interfaces of the system and provide kinetic stability to the formulations. Surfactants
are surface-active groups that consist of hydrophobic and hydrophilic parts. The advances
in surfactants have led to their vast applications in several industries including textiles, the
healthcare sector, automobiles, food-packaging, water disinfectants, paints, cosmetics, etc.
Surfactants prevent the film defects that are caused by surface tension gradients. They also
serve as a pigment dispersants and a binder emulsifiers. Surface-active polymers are used
to improve rheological properties. Waterborne polymer colloids are the main component of
products such as coatings, adhesives, agrochemical formulations, pharmaceutical coatings,
and so on. Emulsion polymerization in the presence of surfactants is the traditional process
for producing them.

Surfactants bond chemically as well as physically and become adsorbed to the parti-
cle’s surface. The dynamic interplay between colloidal particle diffusion, surfactants, water
evaporation, and surfactant desorption and adsorption on the particles during the film
forming process results in a non-uniform distribution of the surfactant across the entire
dried film [5]. Flurosurfactants, among the various forms of surfactants, were shown to
significantly reduce surface tension. As a result, they are used in paint formulations to pre-
vent surface tension gradients due to faster solvent evaporation at the coating edges than
in the middle. Owing to the high diffusion coefficient and solubility of water, surfactant-
containing polymers were shown to have a negative effect on barrier properties when
exposed to water or vapor [6].

Due to their vast applications, surfactant–polymeric interactions are widely studied.
The nature of these interactions depends upon the net charge present in either one of
the components or both [7]. At a critical aggregation concentration, surfactant molecules
interact with polymers, forming micelle-like clusters along the polymer chains. There is no
contact between the surfactant and the polymer underneath this concentration. Studies
showed that the surfactant in the solvent system affects the drying rate and the levelling of
the polymeric films [4].

Several researchers studied the effect of surfactant and plasticizers in altering the
intrinsic viscosity of polymer–solvent(s) systems [8–14]. Shirakbari et al. [15] studied two
surfactants: sodium lauryl sulfate (anionic) and nonylphenol ethoxylate (non-ionic) with
40 ethoxylate units and evaluated their effects on the latex film in altering the contact
angle. Muller et al. [16] studied the effect of non-volatile plasticizers on solvent diffusion in
polymeric coatings. The drying rate of the solvent with a high plasticizer content was faster
in the case of low solvent loading. The interactions of various polymers and surfactants
have been studied and analyzed in the literature [4,16–24]. The surfactant-assisted drying
of polymer coatings has received less attention. Few researchers [16,25] have looked at the
effects of plasticizers, including TPP and fluorine-based surfactants, on mutual diffusion
coefficients, drying rates, and levelling effects of polymer/surfactant solutions. The results
have shown an increase in drying rate by almost 10–15%. Few studies [4,24] have been
conducted on fluorine-based surfactants in organic solvents, and one study has been
referred to in water-based coatings.

In our earlier publications [26–28], we used various surfactants to minimize the
residual solvent in organic and water-based polymeric coatings. The effects of a water-
soluble anionic, non-ionic, and fluoro-surfactant on the polymeric coating were studied.
Water-soluble surfactants can aid in maintaining the homogeneity of the polymer solution at
various stages of drying in order to achieve dense polymeric films with no phase separation.
The effect of triphenyl phosphate on the drying of poly (styrene)-p-xylene coatings was
investigated. In different coatings with 5% poly(styrene) and 0% to 2% triphenyl phosphate,
the residual solvent was substantially reduced as the triphenyl phosphate loading increased.
With a 1300 µm initial thickness and a 2% triphenyl phosphate loading, the maximum
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decrease was found to be 91.33%. The presence of triphenyl phosphate did not produce
any morphological changes in the different coatings of various thicknesses.

The optimal method is not only to elucidate drying of glassy polymer coatings in
the presence of surfactant, but also to enhance production and reduce its cost through
mathematical modeling [3]. Modeling of drying of glassy coatings is a highly complicated
process including a large number of adjustable parameters, or parameters obtained from
independent experiments, such as sorption experiments, as reviewed recently by Arya
et al. [3]. The number of a model parameters increases when a surfactant is added into the
drying mixture to further enhance drying. The aim of this work was to develop a simple
mathematical model based on comprehensive methodology, namely machine learning
algorithms, in order to simulate gravimetric drying data. The application of machine
learning in coatings science and engineering is not a new idea [29–35].

In this work, a machine learning technique was applied to gravimetric data for a
system of poly(styrene)-p-xylene in the presence of a surfactant such as triphenyl phosphate
(TPP). This system was chosen due to its wide applications in everyday life [3]. Gravimetry
is a direct, non-destructive technique used to measure the residual solvent content in
drying and the drying rate. The actual prediction of the gravimetric rate is crucial for
important applications such as the online control of industrial dryers. More specifically,
the predictions of a model could be used to manipulate the process conditions of a dryer
such as the flow rate and temperature of the drying medium (air, etc.).

Nowadays, machine learning techniques (MLTs) and artificial intelligence are receiving
attention from researchers from different fields of engineering. These techniques have
wide applications in the fields of engineering, medical, biotechnology, finance, business,
etc. While developing a mathematical model from first principles is quite challenging,
these techniques are extremely useful in developing models for complex systems. These
are data-driven techniques that are based on the black box principle and therefore do not
require system knowledge. If we are unable to construct mathematical models for complex
processes, we can conduct a variety of experiments and generate input–output data for
these processes. A regression model can be developed using these experimental data with
the help of a machine learning technique that develops a relationship between the input
and output data. This regression model performs well in extrapolating and interpolating.
It can predict the output for any given value of input. This model will help researchers to
avoid new experiments in order to understand the process further. There are a number
of MLTs available, such as artificial neural networks, support vector regression machines,
regression trees, etc. [36–42]. Each technique has its pros and cons. Regression tree models
are popular in the literature because of their ability to fit higher-order non-linear data, great
interpretability, and to provide good prediction accuracy. In this study, a regression tree
model was developed to predict weight loss for the given values of time, TPP, and initial
thickness. For developing a regression tree model, all the drying data were taken from our
previously published article [28].

Five sets of data were used to train and validate the model predictions. These sets are
in the practical range of commercial application of surfactants in coatings.

• Set 1: Coating of 2021 µm initial coating thickness having poly(styrene), p-xylene, and
TPP, 4.95%, 95.05%, and 0%, respectively.

• Set 2: Coating of 2011 µm initial coating thickness having poly(styrene), p-xylene, and
TPP, 5.02%, 94.46%, and 0.52%, respectively.

• Set 3: Coating of 1999 µm initial coating thickness having poly(styrene), p-xylene, and
TPP, 5.03%, 93.95%, and 1.02%, respectively.

• Set 4: Coating of 2005 µm initial coating thickness having poly(styrene), p-xylene, and
TPP, 5.02%, 93.47%, and 1.51%, respectively.

• Set 5: Coating of 2009 µm initial coating thickness having poly(styrene), p-xylene, and
TPP, 4.99%, 93.01%, and 2.00%, respectively.
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2. Modeling Based on Machine Learning Technique: Regression Tree Model

Regression tree is a well-known machine learning technique. This technique can be
used to develop regression and classification models as well. MLTs are based on either
supervised or unsupervised learning. In the case of supervised learning, a model is
trained/learned/developed from the given input–output data. The data are divided into
two parts, i.e., training and testing data. The model is fitted to the training data, and the
trained model’s accuracy is evaluated using the testing data. If the accuracy is satisfactory,
this model can be used to predict output for fresh inputs from the same system. These
can be derived from the process’s history or produced experimentally. In unsupervised
learning, we only have input data, no output, and the model learns on its own. Supervised
learning methods can be very useful in developing models for complicated and highly
non-linear processes. Regression tree is based on supervised learning.

For a detailed description of regression trees, one can refer to Breiman et al. [43] and
Hastie et al. [44]. There are three types of nodes that make up a regression tree. The first
node in the tree is a root node with no incoming edges, while all other nodes have exactly
one incoming edge. There will be one incoming edge and at least two outgoing edges on
the internal node. The nodes at the end of the tree are called leaves (also known as terminal
or decision nodes). The tree’s final results are stored in terminal/decision nodes. Using a
specific criterion, each internal node divides the instances into two sub-spaces. Each split
is marked by the appearance of two new branches further down the tree. To measure the
target value, a tree is usually constructed using a collection of binary rules, i.e., recursive
binary splitting, until the terminal leaf node becomes saturated. Consider a training set
L = {(x1, y1), . . . , (xN , yN)} made of N observations from random vectors (x, y). Vector
x =

(
x1, . . . , xM)

contains inputs/predictors or explanatory variables, say x ∈ RM, and
y ∈ I , where I is a numerical response. Figure 1 depicts a simple decision tree with three
inputs/predictors (x1, x2, and x3) and four output values (y1, y2, y3, and y4). Now, a test is
applied to one of the inputs, say xi, at each internal node in the tree. One can move to either
the left or right sub-branch of the tree, depending on the results of the test. Eventually, it
arrives at a leaf node and makes a prediction. All of the training data points that hit the
leaf are averaged in this prediction.
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Figure 1. An example of a decision tree.

There are various algorithms for determining which of the inputs can split the node
(starting from the root node) and for determining the best split value at a node. In the case
of regression, the sum of squared errors (SSE) is typically used. The SSE for a tree T is
given as

SSE = ∑
cεleaves(T)

∑
iεC

(yi −mC)
2
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where mC = 1
nC

∑
iεC

yi is the prediction for leaf C.

In regression trees, the first split is based on the input/predictor, and its values are
in the training set that yields the lowest SSE value, and so on for further splits. Either a
tree can be grown to its full depth, or its depth can be controlled by using some stopping
criterion. Generally, a deep tree may overfit the data. By using some depth-controlling
criterion, small/shallow trees can be grown. This methodology of converting a deep tree
into a smaller/shallow tree is known as pruning. Breiman et al. [43] suggested pruning
methods. According to these methods, a tree is allowed to grow to its full extent, then
it is tested whether the tree is overfitting the data. The over-fitted tree is then converted
into a smaller tree by reducing sub-branches that do not contribute to the accuracy of
the generalization.

Various studies showed that the pruning of a tree can improve its generalization
ability, especially in noisy domains. A more successful approach to finding regression trees
uses the idea of cross-validation. First of all, our complete data set was converted into two
parts, i.e., training set and test set. Further, the training set was converted randomly into
two parts, i.e., training and validation sets (say, 50% for training and 50% for validation).
Then, the largest possible tree is grown by using a training set only, which may overfit
the data. In order to prune the tree, cross-validation is used. The sum of squared error is
measured on the validation data on each pair of leaf nodes with a similar parent and the
sum of squared error is compared to see if replacing those two nodes and creating a leaf
for their parent would reduce the sum of squared error. This process is repeated until the
validation data error is no longer affected by pruning.

In the present work, we have three input/predictors, i.e., time (x1), TPP (x2), and initial
coating thickness (x3), and one target variable (output), i.e., weight loss (y). Our output
variable is continuous, so a regression tree has been created that could predict weight
loss for given values of inputs. A total of 16,258 samples are obtained experimentally.
These samples are divided into two parts, i.e., 12,960 samples are used for the training,
whereas the remaining 3298 are used to test the prediction accuracy of the trained tree.
The regression tree is grown with the help of MATLAB (7.0, 2004, Mathworks India
Pvt. Ltd., Bangalore, India) software. A MATLAB code is developed with the help of
inbuilt functions available in the machine learning toolbox of the MATLAB. In the code, x
(training input samples) contained 12,960 samples (a data matrix of 12,960 × 3) whereas
y (corresponding training output samples) contained 12,960 samples (a data matrix of
12,960 × 1), similarly X (testing output samples) contained 3298 samples (a data matrix of
3298 × 3) and Y (corresponding testing output samples) contained 3298 samples (a data
matrix of 3298 × 1). These data files are loaded into the program with the help of the “load”
function. Furthermore, a regression tree has been fitted on the training data (x,y) with the
help of the “fitrtree” function. The “view” function is used to view the regression tree
generated for the given data. Then, this regression tree model is used to predict output
values (Yfit1) for given input values (X) with the help of the “predict” function. With the
help of the “loss” function, mean squared error (MSE) is calculated between predicted
values (Yfit1) by the regression tree and actual outputs (Y). MSE 0 indicates 100% match
between predicted values and actual outputs.

3. Results and Discussion

The MSE between the predicted values of the tree (Yfit1) and actual outputs (Y) is
obtained as 8.8415 × 10−6. This tree is grown to its full extent (without pruning); it has
not over fitted the data and predicted weight loss perfectly for the given testing inputs
(X). This tree is very large (with 294 nodes); it is not possible to present it here, but we
have shown its pruned version in Figure 2 (tree with six nodes only, pruned to the level of
288 nodes). The “prune” function is used to prune the tree up to a desired level, so the tree
was reduced to optimum size without compromising the prediction accuracy. Although
our tree with full depth produced excellent results, and the model can be used without
any doubt for our system to predict weight loss for given values of time, TPP, and initial



Coatings 2021, 11, 1529 6 of 14

thickness, we still randomly developed a small tree (pruned tree but not having optimum
depth). This pruned tree has predicted outputs with less accuracy compared to a tree with
all 294 nodes because the obtained MSE was 2.3248 × 10−4. The purpose of developing
this tree is to present it here, so the reader can understand it easily.
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Tables 1–5 show a comparison between the model’s (fully grown tree) predicted
values (Yfit1) and actual values (Y). Figures 3–7 show the accuracy of prediction of the
developed model. The maximum difference between the model’s predicted values and
experimental values is ±1%. The developed model can be used for a drying study of poly
(styrene)-p-xylene coatings with and without TPP. Hence, there will no need to perform
any further experiments for this system.

Table 1. Sample error between predicted and experimental values for 2021 µm initial coating
thickness with poly(styrene), p-xylene, and TPP contents of 4.95%, 95.05%, and 0%, respectively.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

460 0.28964 0.28821 0.4944

465 0.28951 0.28821 0.4497

470 0.28938 0.28821 0.4050

475 0.28925 0.28821 0.3603

515 0.28819 0.28821 0.0062

520 0.28806 0.28821 0.0514

525 0.28793 0.28821 0.0965

530 0.2878 0.28821 0.1417

885 0.27895 0.28000 0.3779

890 0.27883 0.28000 0.4211

895 0.27871 0.28000 0.4644

900 0.27859 0.28000 0.5076

1665 0.26092 0.25835 0.9834

1670 0.26081 0.25835 0.9417

1675 0.2607 0.25835 0.8999
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Table 1. Cont.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

1680 0.26058 0.25835 0.8542

1805 0.25775 0.25835 0.2344

1810 0.25764 0.25835 0.2772

1815 0.25753 0.25835 0.3200

1820 0.25741 0.25835 0.3668

2451 0.24335 0.24473 0.5682

2456 0.24324 0.24473 0.6137

2461 0.24313 0.24473 0.6592

2466 0.24302 0.24473 0.7048

2471 0.24291 0.24473 0.7504

Table 2. Sample error between predicted and experimental values for 2011 µm initial coating
thickness with poly(styrene), p-xylene, and TPP contents of 5.02%, 94.46%, and 0.52%, respectively.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g

% Absolute
Error

30 0.29862 0.29865 0.0096

35 0.29855 0.29865 0.0330

40 0.29847 0.29865 0.0599

45 0.2984 0.29865 0.0833

800 0.28184 0.28000 0.6514

805 0.28173 0.28000 0.6126

810 0.28162 0.28000 0.5737

815 0.28152 0.28000 0.5384

1526 0.26616 0.26768 0.5703

1531 0.26604 0.26768 0.6156

1536 0.26591 0.26768 0.6648

1541 0.26579 0.26768 0.7103

3371 0.22324 0.22327 0.0122

3376 0.22313 0.22327 0.0615

3381 0.22302 0.22327 0.1108

3386 0.22291 0.22327 0.1602

5792 0.17156 0.16992 0.9579

5797 0.17146 0.16992 0.9001

5802 0.17136 0.16992 0.8423

5807 0.17126 0.16992 0.7844

15,765 0.02383 0.02401 0.7727

15,770 0.02383 0.02401 0.7727

15,775 0.02382 0.02401 0.8150

15,780 0.02382 0.02401 0.8150

15,785 0.02382 0.02401 0.8150
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Table 3. Sample error between predicted and experimental values for 1999 µm initial coating
thickness with poly(styrene), p-xylene, and TPP contents of 5.03%, 93.95%, and 1.02%, respectively.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

140 0.29497 0.29664 0.5666

145 0.29486 0.29664 0.6041

150 0.29475 0.29664 0.6416

155 0.29463 0.29664 0.6826

160 0.29451 0.29664 0.7237

165 0.29439 0.29664 0.7647

4947 0.17258 0.17446 1.0913

4952 0.17247 0.17446 1.1558

4957 0.17236 0.17446 1.2203

4962 0.17225 0.17446 1.2850

5177 0.16751 0.16581 1.0121

5182 0.1674 0.16581 0.9471

5187 0.16729 0.16581 0.8820

5192 0.16718 0.16581 0.8167

11,399 0.05119 0.05154 0.6759

11,404 0.05112 0.05154 0.8138

11,409 0.05105 0.05154 0.9520

11,414 0.05098 0.05154 1.0906

11,419 0.05092 0.05154 1.2097

15,156 0.02545 0.02520 1.0000

15,161 0.02545 0.02520 1.0000

15,166 0.02545 0.02520 1.0000

15,171 0.02544 0.02520 0.9611

15,176 0.02544 0.02520 0.9611

15,181 0.02544 0.02520 0.9611

Table 4. Sample error between predicted and experimental values for 2005 µm initial coating
thickness with poly(styrene), p-xylene, and TPP contents of 5.02%, 93.47%, and 1.51%, respectively.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

0 0.29896 0.29865 0.1041

5 0.29885 0.29865 0.0674

10 0.29878 0.29865 0.0440

15 0.29878 0.29865 0.0440

20 0.29875 0.29865 0.0339

1821 0.25632 0.25835 0.7936

1826 0.2562 0.25835 0.8408

1831 0.25609 0.25835 0.8841

1836 0.25598 0.25835 0.9274

1841 0.25586 0.25835 0.9748
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Table 4. Cont.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

1926 0.25394 0.25404 0.0397

1931 0.25383 0.25404 0.0831

1936 0.25372 0.25404 0.1265

1941 0.25361 0.25404 0.1699

1946 0.25349 0.25404 0.2173

1951 0.25338 0.25404 0.2608

3331 0.22327 0.22327 0.0013

3336 0.22316 0.22327 0.0480

3341 0.22305 0.22327 0.0974

3346 0.22295 0.22327 0.1423

14,495 0.0284 0.02816 0.8315

14,500 0.02839 0.02816 0.7966

14,505 0.02838 0.02816 0.7616

14,510 0.02838 0.02816 0.7616

14,515 0.02837 0.02816 0.7266

Table 5. Sample error between predicted and experimental values for 2009 µm initial coating
thickness with poly(styrene), p-xylene, and TPP contents of 4.99%, 93.01%, and 2.00%, respectively.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

600 0.28801 0.28625 0.6128

605 0.2879 0.28625 0.5749

610 0.28778 0.28625 0.5334

615 0.28767 0.28625 0.4954

620 0.28756 0.28625 0.4573

2081 0.25686 0.25870 0.7182

2086 0.25676 0.25870 0.7574

2091 0.25665 0.25870 0.8006

2096 0.25655 0.25870 0.8399

2101 0.25645 0.25870 0.8792

2321 0.25197 0.24954 0.9642

2326 0.25187 0.24954 0.9249

2331 0.25177 0.24954 0.8855

2336 0.25167 0.24954 0.8462

2341 0.25157 0.24954 0.8067

5838 0.17955 0.17776 0.9969
5843 0.17945 0.17776 0.9418

5848 0.17934 0.17776 0.8810

5853 0.17924 0.17776 0.8257

16.941 0.02516 0.02536 0.7775

16.946 0.02516 0.02536 0.7775
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Table 5. Cont.

Time, s Experimental Weight
of the Coating, g [28]

Model Predicted
Weight of Coating, g % Absolute Error

16.951 0.02516 0.02536 0.7775

16.956 0.02516 0.02536 0.7775

16.961 0.02515 0.02536 0.8176

16.966 0.02515 0.02536 0.8176
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Figure 4. Comparison of model prediction with the experimental values for coating having 2011
micron initial coating thickness having poly(styrene), p-xylene, and TPP, 5.02%, 94.46%, and
0.52% respectively.
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Figure 5. Comparison of model prediction with the experimental values for coating having 1999
micron initial coating thickness having poly(styrene), p-xylene, and TPP, 5.03%, 93.95%, and
1.02% respectively.
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Figure 6. Comparison of model prediction with the experimental values for coating having 2005
micron initial coating thickness having poly(styrene), p-xylene, and TPP, 5.02%, 93.47%, and
1.51% respectively.
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Figure 7. Comparison of model prediction with the experimental values for coating having 2009
micron initial coating thickness having poly(styrene), p-xylene, and TPP, 4.99%, 93.01%, and
2.00% respectively.

4. Conclusions

Regression tree, one of the well-known machine learning techniques has been utilized
to model the surfactant-assisted drying of poly(styrene)-p-xylene coatings in this study. To
improve the solvent removal rate and to reduce drying-induced flaws, triphenyl phosphate
is used as a surfactant. A regression tree is constructed to predict weight loss using input
values. The model produced accurate results and it can reliably be used to estimate weight
loss for specific time, TPP, and initial thickness values. The model predictions are within
1% of the experimental data. As proven by this and other publications, regression tree is a
powerful and straightforward strategy for creating a regression model for generating exper-
imental data. This model eliminates the requirement to perform any further experiments
for this system. The effects of the molecular weights of polymers, drying temperature, and
air flow rate on weight loss, solvent concentration, polymer concentration, depth profiling
can be studied as future scope of work in order to construct a comprehensive model for
this system.
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Nomenclature

mc Average of predicted values for leaf C
C Any one of the leafs for the tree
J Numerical response
MSE Mean squared error
N Number of data points/number of observations/number of samples
R Matrix
SSE Sum of squared errors
TPP triphenyl phosphate
x Input data (N×M matrix)
y corresponding output data (N×1 matrix)
Yfit1 Model predicted values for the unseen inputs (not used in training)
L Data set
M Number of inputs/number of predictors
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