

Supplementary Materials: A Facile Urea-Assisted Thermal Decomposition Process of TiO₂ Nanoparticles and Their Photocatalytic Activity

Sandip Madhukar Deshmukh ¹, Mohaseen S. Tamboli ^{2,*}, Hamid Shaikh ³, Santosh. B. Babar ¹, Dipak. P. Hiwarale ¹, Ankush Gautam Thate ⁴, Asiya F. Shaikh ⁵, Mohammad Asif Alam ⁶, Sanjay M. Khetre ^{7,*} and Sambhaji R. Bamane ^{8,*}

- ¹ Department of Chemistry, VNBN Mahavidyalaya, Shirala, 415408 Maharashtra, India; sandip.deshmukh555@gmail.com (S.M.D.); santosh87babar@gmail.com (S.B.B.); dipakchemistry@gmail.com (D.P.H.)
- ² School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- ³ SABIC Polymer Research Center (SPRC), Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; hamshaikh@ksu.edu.sa
- ⁴ Department of Chemistry, Miraj Mahavidyalaya, Miraj, 416410 Maharashtra, India; ankush.thate@gmail.com
- ⁵ Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Government of India, Off Pashan Road, Panchawati, Pune–411008, India; asiyashaikh2020@gmail.com
- ⁶ Center of Excellence in Engineering Materials, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; moalam@ksu.edu.sa
- ⁷ Nanomaterials Research Laboratory, Department of Chemistry, Dahiwadi College, Dahiwadi, 415508 Maharashtra, India; sanjaykhetre@gmail.com
- ⁸ Department of Chemistry, Sushila Shankarrao Gadhave Mahavidyalaya, Khandala, 412802 Maharashtra, India; sambhajibamane@yahoo.com
- * Correspondence: tamboli.mohseen@gmail.com (M.S.T.); sanjaykhetre@gmail.com (S.M.K.); sanjaykhetre@gmail.com (S.R.B.)

Citation: Deshmukh,S.M.; Tamboli , M.S.; Shaikh, H.; Babar, S.B.; Hiwarale, D.P.; Thate, A.G.; Shaikh, A.F.; Alam, M.A.; Khetre, S.M.; Bamane, S.R. A Facile Urea-Assisted Thermal Decomposition Process of TiO₂ Nanoparticles and Their Photocatalytic Activity . *Coatings* **2021**, *11*, x. https://doi.org/10.3390/xxxx

Academic Editor: Abu ul Hassan Sarwar Rana Received: 28 December 2020 Accepted: 28 January 2021 Published: 31 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Sample	20	θ	<i>d</i> _{cal}	dstd	Hkl	а	С	D
	(°)	(°)	(Å)	(Å)		(Å)	(Å)	(nm)
TU0	25.14	12.57	3.5389	3.520	101			
	37.68	18.84	2.3850	2.378	004			
	47.96	23.98	1.8951	1.892	200			
	53.82	26.91	1.7017	1.699	105			
	54.88	27.44	1.6713	1.666	211	3.800	9.534	19
	62.58	31.29	1.4829	1.480	204			
	68.76	34.38	1.3639	1.364	116			
	70.24	35.12	1.3388	1.337	220			
	75.08	37.54	1.2640	1.264	215			
	25.14	12.57	3.5389	3.520	101			
	37.72	18.86	2.3826	2.378	004			
	47.84	23.92	1.8995	1.892	200			
	53.86	26.93	1.7006	1.699	105			
TU1	54.88	27.44	1.6713	1.666	211	3.805	9.511	18
	62.58	31.29	1.4829	1.480	204			
	68.48	34.24	1.3688	1.364	116			
	70.12	35.06	1.3408	1.337	220			
	74.92	37.46	1.2663	1.264	215			
	25.10	12.55	3.5445	3.520	101			
	37.34	18.67	2.4059	2.378	004			
	47.86	23.93	1.8988	1.892	200			
	53.72	26.86	1.7047	1.699	105			
TU2	54.92	27.46	1.6702	1.666	211	3.805	9.564	17
	62.56	31.28	1.4834	1.480	204			
	68.72	34.36	1.3646	1.364	116			
	70.14	35.07	1.3405	1.337	220			
	74.96	37.48	1.2658	1.264	215			
	25.12	12.56	3.5417	3.520	101			
	37.66	18.83	2.3862	2.378	004			
	47.92	23.96	1.8965	1.892	200			
	53.76	26.88	1.7035	1.699	105			
TU3	54.90	27.45	1.6708	1.666	211	3.804	9.516	16
	62.66	31.33	1.4812	1.480	204			
	68.44	34.22	1.3695	1.364	116			
	70.08	35.04	1.3415	1.337	220			
	74.88	37.44	1.2669	1.264	215			
	25.20	12.6	3.5306	3.520	101			
TU4	37.64	18.82	2.3875	2.378	004			
	47.98	23.99	1.8943	1.892	200			
	53.82	26.91	1.7017	1.699	105			
	55.00	27.5	1.6680	1.666	211	3.794	9.538	14
	62.60	31.3	1.4825	1.480	204			
	68.74	34.37	1.3643	1.364	116			
	70.22	35.11	1.3391	1.337	220			
	75.04	37.52	1.2646	1.264	215			
TU5	25.12	12.56	3.5417	3.520	101	3.804	9.538	15

Table S1. Various structural parameters of $\mathrm{Ti}O_2$ obtained from XRD analysis.

37.60	18.8	2.3899	2.378	004
47.90	23.95	1.8973	1.892	200
53.86	26.93	1.7006	1.699	105
54.84	27.42	1.6725	1.666	211
62.56	31.28	1.4834	1.480	204
68.54	34.27	1.3678	1.364	116
70.00	35	1.3428	1.337	220
75.04	37.52	1.2646	1.264	215

2θ; Bragg angle, *d*_{cal}; Calculated interplanar spacing, *d*_{std}; Standard interplanar spacing, *h*, *k*, *l*; miller indices, *a*; lattice parameter, *c*; lattice parameter, *D*; Crystalline size.

Table S2. Comparison of photodegradation performance of TiO2 with reported photocatalysts.
--

Seril Number	Synthesis Method	Photocatalyst	Pollutant	Degradation Time (min)	Photocatalytic Activity (%)	References
1	Hydrothermal	TiO ₂	Methyl Orange	150	67	29
2	Sol-gel	TiO ₂	Methyl Orange	240	67	30
3	Thermal Decomposition	TiO ₂	Methyl Orange	100	99.93	Present Work