Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach
Abstract
:1. Introduction
2. Experimental Details
2.1. Coating Deposition
2.2. Oxidation Tests
2.3. Sample Characterization
3. Results
3.1. The As-Deposited Coatings
3.2. Weight-Gain Measurements
3.3. The Samples after Oxidation in Air
3.3.1. Optical Microscopy
3.3.2. Elemental Distributions over a Depth
3.3.3. Phase Composition
3.3.4. In Situ XRD
4. Discussion
5. Conclusions
- The multilayer CrN/Cr coatings have better protective properties in comparison to metallic Cr at 1100 °C in air. The results show higher weight gain for Cr-coated E110 alloy (~20 mg/cm2) compared to alloy with multilayer coatings (~9–13 mg/cm2). The highest oxidation resistance belongs to the sample with the CrN/Cr-250 coating.
- CrN/Cr multilayers demonstrate barrier properties against Cr–Zr inter-diffusion. The formation of a ZrN layer beneath the multilayer coating due to decomposition of chromium nitrides can decelerate the kinetics of Cr–Zr inter-diffusion. For the considered total thickness (~2.5 µm) and multilayer step of 0.25 µm, the formation of the Cr2Zr phase occurs by ~150 °C higher in comparison to metallic Cr coating.
- No coating cracking or local accelerated oxidation are observed for the multilayer coatings with a layer step of 0.25 and 0.5 µm after oxidation in air. Deposition of CrN/Cr multilayers can decrease nitrogen effect during Zr oxidation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brachet, J.C.; Rouesne, E.; Ribis, J.T.; Guilbert, S.; Urvoy, G. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process. Corros. Sci. 2020, 167, 108537. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and development progress of Cr-based surface coatings in nuclear fuel element: I. selection, preparation, and characteristics of coating materials. Coatings 2020, 10, 808. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and development progress of Cr-based surface coating in nuclear fuel elements: II. Current status and shortcomings of performance studies. Coatings 2020, 10, 835. [Google Scholar] [CrossRef]
- Sevecek, M.; Gurgen, A.; Seshadri, A.; Che, Y.; Wagih, M.; Phillips, B.; Champagne, V.; Shirvan, K. Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance. Nucl. Eng. Technol. 2018, 50, 229–236. [Google Scholar] [CrossRef]
- Yeom, H.; Maier, B.; Johnson, G.; Dabney, T.; Lenling, M.; Sridharan, K. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments. J. Nucl. Mater. 2019, 526, 151737. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Rombaeva, M.; Syrtanov, M.S.; Bleykher, G.A. Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol. 2020, 389, 125618. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Syrtanov, M.S.; Tang, C.; Steinbrück, M. Oxidation kinetics of Cr-coated zirconium alloy: Effect of coating thickness and microstructure. Corros. Sci. 2020, 175, 108883. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Wen, Q.; Ruan, X.; Luo, F.; Bai, G.; Qing, Y.; Zhu, D.; Huang, Z.; Zhang, Y.; et al. Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions. Surf. Coat. Technol. 2018, 344, 141–148. [Google Scholar] [CrossRef]
- Brachet, J.C.; Idarraga-Trujillo, I.; Le Flem, M.; Le Saux, M.; Vandenberghe, V. Early studies on Cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors. J. Nucl. Mater. 2019, 517, 268–285. [Google Scholar] [CrossRef]
- Yang, J.; Stegmaier, U.; Tang, C.; Steinbruck, M.; Große, M.; Wang, S.; Seifert, H. High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment. J. Nucl. Mater. 2021, 547, 152806. [Google Scholar] [CrossRef]
- Tang, C.; Stueber, M.; Seifert, H.J.; Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros. Rev. 2017, 35, 141–165. [Google Scholar] [CrossRef]
- Krejcí, J.; Kabátová, J.; Manoch, F.; Kočí, J.; Cvrček, L.; Málek, J. Development and testing of multicomponent fuel cladding with enhanced accidental performance. Nucl. Eng. Technol. 2020, 52, 597–609. [Google Scholar] [CrossRef]
- Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Reshetnyak, E.N.; Tolmachova, G.N.; V’yugov, P.N. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air. J. Nucl. Mater. 2015, 465, 400–406. [Google Scholar] [CrossRef]
- Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X. Study of the oxidation behavior of CrN coating on Zr alloy in air. J. Nucl. Mater. 2019, 515, 354–369. [Google Scholar] [CrossRef]
- Tang, C.; Stüber, M.; Hans, J.; Steinbrück, M. Metallic and Ceramic Coatings for Enhanced Accident Tolerant Fuel Cladding. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 490–514. [Google Scholar] [CrossRef]
- Musil, J.; Sklenka, J.; Procházka, J. Protective over-layer coating preventing cracking of thin films deposited on flexible substrates. Surf. Coat. Technol. 2013, 240, 275–280. [Google Scholar] [CrossRef]
- Musil, J.; Sklenka, J.; Čerstvý, R. Protection of brittle film against cracking. Appl. Surf. Sci. 2016, 370, 306–311. [Google Scholar] [CrossRef]
- Daub, K.; Van Nieuwenhove, R.; Nordin, V. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4. J. Nucl. Mater. 2015, 467, 260–270. [Google Scholar] [CrossRef]
- Tallman, D.; Anasori, B.; Barsoum, M.A. Critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater. Res. Lett. 2013, 1, 115–125. [Google Scholar] [CrossRef]
- Skarohlid, J.; Skoda, R. High temperature behaviour of CrAlSiN MAX phase coatings on zirconium alloy. In Proceedings of the 2017 Water Reactor Fuel Performance 2017, Jeju, Korea, 10–14 September 2017. [Google Scholar]
- Ma, X.; Wu, Y.; Tan, J.; Meng, C.; Yang, L.; Dang, W.; He, X. Evaluation of corrosion and oxidation behaviors of TiAlCrN coatings for nuclear fuel cladding. Surf. Coat. Technol. 2019, 358, 521–530. [Google Scholar] [CrossRef]
- Krejci, J.; Sevecek, M.; Cvrcek, L. Development of chromium and chromium nitride coated cladding for VVER reactors. In Proceedings of the 2017 Water Reactor Fuel Performance, Jeju, Korea, 10–14 September 2017. [Google Scholar]
- Sidelev, D.V.; Kashkarov, E.B.; Syrtanov, M.S.; Krivobokov, V.P. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings. Surf. Coat. Technol. 2019, 369, 69–78. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018, 3, 16–29. [Google Scholar] [CrossRef]
- Perez, R.A.; Nakajima, H.; Dyment, F. Diffusion in -Ti and Zr. Mater. Trans. 2003, 44, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Steinbrueck, M.; Silva, F.O.; Grosse, M. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C. J. Nucl. Mater. 2017, 490, 226–237. [Google Scholar] [CrossRef]
- Duriez, C.; Dupont, T.; Schmet, B.; Enoch, F. Zircaloy-4 and M5 high temperature oxidation and nitriding in air. J. Nucl. Mater. 2008, 380, 30–45. [Google Scholar] [CrossRef]
# | Multilayers | Outer Cr Layer | t, min | Ub, V | jsub, mA/cm2 | Tsub, K | |
---|---|---|---|---|---|---|---|
N | h, nm | hCr, µm | |||||
Cr | – | – | 2.5 | 35 | −50 | 67 | 582 |
CrN/Cr-50 | 40 | 50 | 0.5 | 50 | 72 | 576 | |
CrN/Cr-250 | 8 | 250 | 0.5 | 72 | 578 | ||
CrN/Cr-500 | 4 | 500 | 0.5 | 73 | 583 |
Uncoated E110 Alloy | Coated E110 Alloy | |||
---|---|---|---|---|
Cr | CrN/Cr-50 | CrN/Cr-250 | CrN/Cr-500 | |
Before Oxidation | ||||
After 10 min Oxidation | ||||
After 20 min Oxidation | ||||
After 30 min Oxidation | ||||
After 40 min Oxidation | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidelev, D.V.; Syrtanov, M.S.; Ruchkin, S.E.; Pirozhkov, A.V.; Kashkarov, E.B. Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach. Coatings 2021, 11, 227. https://doi.org/10.3390/coatings11020227
Sidelev DV, Syrtanov MS, Ruchkin SE, Pirozhkov AV, Kashkarov EB. Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach. Coatings. 2021; 11(2):227. https://doi.org/10.3390/coatings11020227
Chicago/Turabian StyleSidelev, Dmitrii V., Maxim S. Syrtanov, Sergey E. Ruchkin, Alexey V. Pirozhkov, and Egor B. Kashkarov. 2021. "Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach" Coatings 11, no. 2: 227. https://doi.org/10.3390/coatings11020227
APA StyleSidelev, D. V., Syrtanov, M. S., Ruchkin, S. E., Pirozhkov, A. V., & Kashkarov, E. B. (2021). Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach. Coatings, 11(2), 227. https://doi.org/10.3390/coatings11020227