Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, R.; Hill, V.G.; Osborn, E.F. Polymorphism of Ga2O3 and the system Ga2O3—H2O. J. Am. Chem. Soc. 1952, 74, 719–722. [Google Scholar] [CrossRef]
- Razeghi, M.; Park, J.H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.; Wu, J.; et al. A Review of the growth, doping, and applications of β-Ga2O3 thin films. Proc. SPIE 2018, 10533, 105330R1-24. [Google Scholar]
- Anhar Uddin Bhuiyan, A.F.M.; Feng, Z.; Johnson, J.M.; Huang, H.L.; Hwang, J.; Zhao, H. MOCVD Epitaxy of ultrawide bandgap β-(AlxGa1−x)2O3 with high-Al composition on (100) β-Ga2O3 substrates. Cryst. Growth Des. 2020, 20, 6722–6730. [Google Scholar] [CrossRef]
- Hatipoglu, I.; Mukhopadhyay, P.; Alema, F.; Sakthivel, T.S.; Seal, S.; Osinsky, A.; Schoenfeld, W.V. Tuning the responsivity of monoclinic solar-blind photodetectors grown by metal organic chemical vapor deposition. J. Phys. D Appl. Phys 2020, 53, 454001. [Google Scholar] [CrossRef]
- Bi, X.; Wu, Z.; Huang, Y.; Tang, W. Stabilization and enhanced energy gap by Mg doping in ε-phase Ga2O3 thin films. AIP Adv. 2018, 8, 025008. [Google Scholar] [CrossRef] [Green Version]
- Teherani, F.H.; Rogers, D.J.; Sandana, V.E.; Bove, P.; Ton-That, C.; Lem, L.L.C.; Chikoidze, E.; Neumann-Spallart, M.; Dumont, Y.; Huynh, T.; et al. Investigations on the substrate dependence of the properties in nominally-undoped beta-Ga2O3 thin films grown by PLD. Proc. SPIE 2017, 10105, 101051R. [Google Scholar]
- Shinohara, D.; Fujita, S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys. 2008, 47, 7311–7313. [Google Scholar] [CrossRef]
- Kawaharamura, T.; Dang, G.T.; Furuta, M. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn. J. Appl. Phys. 2012, 51, 040207. [Google Scholar] [CrossRef]
- Sun, H.; Li, K.H.; Castanedo, C.T.; Okur, S.; Tompa, G.S.; Salagaj, T.; Lopatin, S.; Genovese, A.; Li, X. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst. Growth Des. 2018, 18, 2370–2376. [Google Scholar] [CrossRef]
- Boschi, F.; Bosi, M.; Berzina, T.; Buffagni, E.; Ferrari, C.; Fornari, R. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J. Cryst. Growth 2016, 443, 25–30. [Google Scholar] [CrossRef]
- Yao, Y.; Okur, S.; Lyle, L.A.; Tompa, G.S.; Salagaj, T.; Sbrockey, N.; Davis, R.F.; Porter, L.M. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater. Res. Lett. 2018, 6, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; McClintock, R.; Razeghi, M. Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semicond. Sci. Technol. 2019, 34, 08LT01. [Google Scholar] [CrossRef]
- McClintock, R.; Jaud, A.; Gautam, L.; Razeghi, M. Solar-blind photodetectors based on Ga2O3 and III-nitrides. Proc. SPIE 2020, 11288, 1128803. [Google Scholar]
- Kim, J.; Tahara, D.; Miura, Y.; Kim, B.G. First-principle calculations of electronic structures and polar properties of (κ, ε)-Ga2O3. Appl. Phys. Express 2018, 11, 061101. [Google Scholar] [CrossRef]
- Xu, Y.; Park, J.H.; Yao, Z.; Wolverton, C.; Razeghi, M.; Wu, J.; Dravid, V.P. Strain-induced metastable phase stabilization in Ga2O3 thin films. ACS Appl. Mater. Interfaces 2019, 11, 5536–5543. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; He, K.; Hu, X.; Dravid, V.P.; Razeghi, M. Study of phase transition in MOCVD grown Ga2O3 from κ to β phase by ex situ and in situ annealing. Photonics 2021, 8, 17. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Anomalous Fe diffusion in Si-ion-implanted β–Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers. Appl. Phys. Lett. 2015, 106, 032105. [Google Scholar] [CrossRef]
- Joishi, C.; Xia, Z.; McGlone, J.; Zhang, Y.; Arehart, A.R.; Ringel, S.; Lodha, S.; Rajan, S. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl. Phys. Lett. 2018, 113, 123501. [Google Scholar] [CrossRef]
- Parisini, A.; Bosio, A.; Montedoro, V.; Gorreri, A.; Lamperti, A.; Bosi, M.; Garulli, G.; Vantaggio, S.; Fornari, R. Si and Sn doping of ε-Ga2O3 layers. APL Mater. 2019, 7, 031114. [Google Scholar] [CrossRef] [Green Version]
- Moser, N.; McCandless, J.; Crespo, A.; Leedy, K.; Green, A.; Neal, A.; Mou, S.; Ahmadi, E.; Speck, J.; Chabak, K.; et al. Ge-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2017, 38, 775–778. [Google Scholar] [CrossRef]
- Zhang, Y.; Alema, F.; Mauze, A.; Koksaldi, O.S.; Miller, R.; Osinsky, A.; Speck, J.S. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater. 2019, 7, 022506. [Google Scholar] [CrossRef] [Green Version]
- McClintock, R.; Yasan, A.; Mayes, K.; Shiell, D.; Darvish, S.R.; Kung, P.; Razeghi, M. High quantum efficiency AlGaN solar-blind p-i-n photodiodes. Appl. Phys. Lett. 2004, 84, 1248–1250. [Google Scholar] [CrossRef]
- Razeghi, M.; Yasan, A.; McClintock, R.; Mayes, K.; Shiell, D.; Darvish, S.R.; Kung, P. Review of III-nitride optoelectronic materials for light emission and detection. Phys. Status Solidi (c) 2004, 1, S141–S148. [Google Scholar] [CrossRef]
- Keller, S.; Heikman, S.; Ben-Yaacov, I.; Shen, L.; DenBaars, S.P.; Mishra, U.K. Indium-surfactant-assisted growth of high-mobility AlN/GaN multilayer structures by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 3449–3451. [Google Scholar] [CrossRef]
- Kyle, E.C.H.; Kaun, S.W.; Young, E.C.; Speck, J.S. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN. Appl. Phys. Lett. 2015, 106, 222103. [Google Scholar] [CrossRef]
- Aisaka, T.; Tanikawa, T.; Kimura, T.; Shojiki, K.; Hanada, T.; Katayama, R.; Matsuoka, T. Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth. Jpn. J. Appl. Phys. 2014, 53, 085501. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Han, E.; Yue, G.; Chen, Z.; Wu, Z.; Wang, G.; Jiang, H. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 2015, 106, 162102. [Google Scholar] [CrossRef]
Structure | Type of Superlattice | Ga | In | H2O | Si |
---|---|---|---|---|---|
Structure 1 | Ga2O3 (Reference) | 5 sccm | 0 sccm | 1600 sccm | 20 sccm |
Structure 2 | Ga2O3 (30 s)/In2O3 (1 min) | 5 sccm | 50 sccm | 1600 sccm | 20 sccm |
Structure 3 | Ga2O3 (30 s)/In2O3 (1 min) | 5 sccm | 70 sccm | 1600 sccm | 20 sccm |
Structure 4 | Ga2O3 (1 min)/(InxGa1−x)2O3 (1 min) | 5 sccm | 70 sccm | 1600 sccm | 20 sccm |
Structure | Before Annealing Process | After Annealing Process | ||
---|---|---|---|---|
Hall Mobility | Carrier Concentration | Hall Mobility | Carrier Concentration | |
Structure 1 | Not measurable | Not measurable | 14 cm2/V·s | cm−3 |
Structure 2 | 30 cm2/V·s | cm−3 | 27.6 cm2/V·s | cm−3 |
Structure 3 | 150 cm2/V·s | cm−3 | 13.8 cm2/V·s | cm−3 |
Structure 4 | 10 cm2/V·s | cm−3 | 29 cm2/V·s | cm−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings 2021, 11, 287. https://doi.org/10.3390/coatings11030287
Lee J, Kim H, Gautam L, Razeghi M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings. 2021; 11(3):287. https://doi.org/10.3390/coatings11030287
Chicago/Turabian StyleLee, Junhee, Honghyuk Kim, Lakshay Gautam, and Manijeh Razeghi. 2021. "Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD" Coatings 11, no. 3: 287. https://doi.org/10.3390/coatings11030287
APA StyleLee, J., Kim, H., Gautam, L., & Razeghi, M. (2021). Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings, 11(3), 287. https://doi.org/10.3390/coatings11030287