Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition of MWCNTs-Based Thin Films by RF Magnetron Sputtering
2.3. Deposition of TiO2 Thin Films by DC Reactive Magnetron Sputtering
2.4. Morphological Characterization
2.5. Data Treatment
3. Results and Discussion
3.1. Sputtered Thin Films’ Characterization
3.2. Sensor Response: Impedance Spectroscopy Measurements
3.3. Sensor Capabilities, Sensitivity and Resolution: Electronic Tongue Concept
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Halden, R. The great sewage census. Anal. Sci. 2019, 79, 22–30. [Google Scholar]
- Brose, D.A.; Kumar, K.; Liao, A.; Hundal, L.S.; Tian, G.; Cox, A.; Zhang, H.; Podczerwinski, E.W. A reduction in triclosan and triclocarban in water resource recovery facilities’ influent, effluent, and biosolids following the U.S. Food and Drug Administration’s 2013 proposed rulemaking on antibacterial products. Water Environ. Res. 2019, 91, 715–721. [Google Scholar] [CrossRef]
- Chen, J.; Meng, X.-Z.; Bergman, A.; Halden, R.U. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. J. Hazard. Mater. 2019, 365, 502–510. [Google Scholar] [CrossRef]
- Hua, W.; Bennett, E.R.; Letcher, R.J. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry. Environ. Int. 2005, 31, 621–630. [Google Scholar] [CrossRef]
- McAvoy, D.C.; Schatowitz, B.; Jacob, M.; Hauk, A.; Eckhoff, W.S. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002, 21, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Olaniyan, L.W.B.; Mkwetshana, N.; Okoh, A.I. Triclosan in water, implications for human and environmental health. SpringerPlus 2016, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health Part B 2017, 20, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Ruszkiewicz, J.A.; Li, S.; Rodriguez, M.B.; Aschner, M. Is Triclosan a neurotoxic agent? J. Toxicol. Environ. Health Part B 2017, 20, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Weiss, L.; Fisher, M.; Hauser, R.; Dumas, P.; Bérubé, R.; Neisa, A.; Leblanc, A.; Lang, C.; Ayotte, P.; et al. Maternal and infant exposure to environmental phenols as measured in multiple biological matrices. Sci. Total. Environ. 2015, 508, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbre, P. Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 121–143. [Google Scholar] [CrossRef]
- Gee, R.H.; Charles, A.; Taylor, N.; Darbre, P.D. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 2007, 28, 78–91. [Google Scholar] [CrossRef]
- Lee, H.-R.; Hwang, K.-A.; Nam, K.-H.; Kim, H.-C.; Choi, K.-C. Progression of Breast Cancer Cells Was Enhanced by Endocrine-Disrupting Chemicals, Triclosan and Octylphenol, via an Estrogen Receptor-Dependent Signaling Pathway in Cellular and Mouse Xenograft Models. Chem. Res. Toxicol. 2014, 27, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Issues Final Rule on Safety and Effectiveness of Antibacterial Soaps; DHHS-Department of Health and Human Services: Washington, DC, USA, 2016.
- Food and Drug Administration. Safety and Effectiveness for Health Care Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; DHHS-Department of Health and Human Services: Washington, DC, USA, 2017.
- Bever, C.S.; Rand, A.A.; Nording, M.; Taft, D.; Kalanetra, K.M.; Mills, D.A.; Breck, M.A.; Smilowitz, J.T.; German, J.B.; Hammock, B.D. Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 2018, 203, 467–473. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Magro, C.; Zagalo, P.; Pereira-Da-Silva, J.; Mateus, E.P.; Ribeiro, A.B.; Ribeiro, P.; Raposo, M. Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials 2020, 10, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, C.; Mateus, E.P.; Paz-Garcia, J.M.; Sério, S.; Raposo, M.; Ribeiro, A.B. Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors 2019, 19, 5349. [Google Scholar] [CrossRef] [Green Version]
- Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens. Bioelectron. 2019, 140, 111272. [Google Scholar] [CrossRef] [PubMed]
- Riul, A.; Dos Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Taylor, D.M.; Mattoso, L.H.C. Artificial taste sensor: Efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Olivati, C.A.; Riul, A.; Balogh, D.T.; Oliveira, O.N.; Ferreira, M. Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess Biosyst. Eng. 2008, 32, 41–46. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy; Wiley: Hoboken, NJ, USA, 2005; ISBN 9780471647492. [Google Scholar]
- Barrocas, B.; Sério, S.; Rovisco, A.; Jorge, M.E.M. Visible-Light Photocatalysis in Ca0.6Ho0.4MnO3 Films Deposited by RF-Magnetron Sputtering Using Nanosized Powder Compacted Target. J. Phys. Chem. C 2014, 118, 590–597. [Google Scholar] [CrossRef]
- Sério, S.; Jorge, M.M.; Maneira, M.; Nunes, Y. Influence of O2 partial pressure on the growth of nanostructured anatase phase TiO2 thin films prepared by DC reactive magnetron sputtering. Mater. Chem. Phys. 2011, 126, 73–81. [Google Scholar] [CrossRef]
- Depla, D.; Mahieu, S.; Greene, J. Sputter Deposition Processes. In Handbook of Deposition Technologies for Films and Coatings; Elsevier BV: Amsterdam, The Netherlands, 2010; pp. 253–296. [Google Scholar]
- Mo, C.; Wei, H.; Wang, T. Fabrication of a self-doped TiO2 nanotube array electrode for electrochemical degradation of methyl orange. J. Chin. Chem. Soc. 2019, 66, 740–747. [Google Scholar] [CrossRef]
- Tiwari, A.; Shukla, A.; Lalliansanga; Tiwari, D.; Lee, S.M. Synthesis and characterization of Ag 0 (NPs)/TiO2 nanocomposite: Insight studies of triclosan removal from aqueous solutions. Environ. Technol. 2020, 41, 3500–3514. [Google Scholar] [CrossRef]
- Xin, Y.; Gao, M.; Wang, Y.; Ma, D. Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chem. Eng. J. 2014, 242, 162–169. [Google Scholar] [CrossRef]
- Liu, H.; Cao, X.; Liu, G.; Wang, Y.; Zhang, N.; Li, T.; Tough, R. Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change. Chemosphere 2013, 93, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Y.; Huang, J.; Xu, L.; Yin, L.; Ji, Y.; Wang, C.; Xu, Z.; Niu, J. Insights into electrochemical decomposition mechanism of lipopolysaccharide using TiO2 nanotubes arrays electrode. J. Hazard. Mater. 2020, 391, 122259. [Google Scholar] [CrossRef] [PubMed]
- Zargar, R.A.; Arora, M.; Alshahrani, T.; Shkir, M. Screen printed novel ZnO/MWCNTs nanocomposite thick films. Ceram. Int. 2021, 47, 6084–6093. [Google Scholar] [CrossRef]
- Jia, J.; Wu, M.; Wang, S.; Wang, X.; Hu, Y.; Chen, H.; Yu, Y.; Shen, C.; Fu, H.; She, Y. Colorimetric sensor array based on silver deposition of gold nanorods for discrimination of Chinese white spirits. Sens. Actuators B Chem. 2020, 320, 128256. [Google Scholar] [CrossRef]
- Magro, C. Advances in Applied Electrokinetics: Treatment, by-Products Reuse and Sensors’ System. Ph.D. Thesis, NOVA University Lisbon, Caparica, Portugal, 2019. [Google Scholar]
- Taylor, D.M.; Macdonald, A.G. AC admittance of the metal/insulator/electrolyte interface. J. Phys. D Appl. Phys. 1987, 20, 1277–1283. [Google Scholar] [CrossRef]
- Yu, X.; Sun, W.; Ni, J. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon. Environ. Pollut. 2015, 206, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Santamaría, L.; Korili, S. Removal of Caffeine and Diclofenac from Aqueous Solution by Adsorption on Multiwalled Carbon Nanotubes. Colloid Interface Sci. Commun. 2018, 22, 25–28. [Google Scholar] [CrossRef]
- Zhang, X.; Song, K.; Liu, J.; Zhang, Z.; Wang, C.; Li, H. Sorption of triclosan by carbon nanotubes in dispersion: The importance of dispersing properties using different surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 280–288. [Google Scholar] [CrossRef]
- Wepasnick, K.A.; Smith, B.A.; Schrote, K.E.; Wilson, H.K.; Diegelmann, S.R.; Fairbrother, D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011, 49, 24–36. [Google Scholar] [CrossRef]
- Correa, D.S.; Pavinatto, A.; Mercante, L.A.; Mattoso, L.H.; Oliveira, J.E.; Riul, A. Chemical sensors based on hybrid nanomaterials for food analysis. Nanobiosensors 2017, 205–244. [Google Scholar] [CrossRef]
- Parra, V.; Arrieta, Á.A.; Fernández-Escudero, J.-A.; Rodríguez-Méndez, M.L.; De Saja, J.A. Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sens. Actuators B Chem. 2006, 118, 448–453. [Google Scholar] [CrossRef]
- Doty, A.C.; Wilson, A.D.; Forse, L.B.; Risch, T.S. Assessment of the Portable C-320 Electronic Nose for Discrimination of Nine Insectivorous Bat Species: Implications for Monitoring White-Nose Syndrome. Biosensors 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Musa, B.; Kamil, Y.M.; Abu Bakar, M.H.; Noor, A.S.M.; Ismail, A.; Mahdi, M.A. Investigating the effect of taper length on sensitivity of the tapered-fiber based temperature sensor. J. Teknol. 2016, 78, 78. [Google Scholar] [CrossRef] [Green Version]
- Lazarova, K.; Bozhilova, S.; Novakov, C.; Christova, D.; Babeva, T. Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties. Coatings 2020, 10, 460. [Google Scholar] [CrossRef]
Matrix | pH | Conductivity (mS cm−1) | Code |
---|---|---|---|
Tap water | 7.06 ± 0.01 | 0.48 ± 0.05 | T |
Mineral water | 5.97 ± 0.01 | 0.047 ± 0.005 | MW |
Infant formula powder prepared with tap water | 6.89 ± 0.01 | 2.0 ± 0.5 | MT |
Infant formula powder prepared with mineral water | 7.11 ± 0.01 | 1.54 ± 0.05 | MMW |
Power (W) | Pressure (mbar) | Time (min) | Frequency (kHz) | Impedance (Ω) | Code | ||
---|---|---|---|---|---|---|---|
G-IDEAU5 | 25 | 2.0 × 10−2 | 20 | 100 | 600 | MWCNT5 | |
G-IDEAU10 | 30 | 2.1 × 10−2 | 20 | 100 | 600 | MWCNT10 | |
85 | 2.5 × 10−2 | 30 | 100 | 600 | MWCNT10-85 | ||
Voltage (V) | Current (A) | O2 (%) | |||||
G-IDEAU5 | 520 | 2.0 × 10−2 | 25 | 458 | 1.14 | 100 | TiO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magro, C.; Sardinha, M.; Ribeiro, P.A.; Raposo, M.; Sério, S. Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach. Coatings 2021, 11, 336. https://doi.org/10.3390/coatings11030336
Magro C, Sardinha M, Ribeiro PA, Raposo M, Sério S. Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach. Coatings. 2021; 11(3):336. https://doi.org/10.3390/coatings11030336
Chicago/Turabian StyleMagro, Cátia, Margarida Sardinha, Paulo A. Ribeiro, Maria Raposo, and Susana Sério. 2021. "Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach" Coatings 11, no. 3: 336. https://doi.org/10.3390/coatings11030336
APA StyleMagro, C., Sardinha, M., Ribeiro, P. A., Raposo, M., & Sério, S. (2021). Magnetron Sputtering Thin Films as Tool to Detect Triclosan in Infant Formula Powder: Electronic Tongue Approach. Coatings, 11(3), 336. https://doi.org/10.3390/coatings11030336