Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure of Mg and Al Coatings
3.2. High Temperature Oxidation
3.2.1. Dynamic Oxidation
3.2.2. Isothermal Oxidation
3.3. Electrochemical Corrosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sozer, E.; Jiang, C.; Gundersen, M.; Umstattd, R. Quantum efficiency measurements of photocathode candidates for back-lighted thyratrons. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 993–998. [Google Scholar] [CrossRef]
- Kim, K.; Norton, D.; Christen, D.; Budai, J. Formation of oxidation-resistant Cu-Mg coatings on (001) Cu for oxide superconducting tapes. Surf. Coat. Technol. 2008, 202, 5136–5139. [Google Scholar] [CrossRef]
- El-Feky, H.; Helal, N.; Negem, M. Electrochemical behavior of some copper alloys in sulfuric acid solutions. Mater. Corros. 2009, 61, 599–610. [Google Scholar] [CrossRef]
- Ptil, S.; Sainkar, S.; Patil, P. Poly(o-anisidine) coatings on copper: Synthesis, characterization and evaluation of corrosion protection performance. Appl. Surf. Sci. 2004, 225, 204–216. [Google Scholar] [CrossRef]
- Lachowicz, M.M. A metallographic case study of formicary corrosion in heat exchanger copper tubes. Eng. Fail. Anal. 2020, 111, 104502. [Google Scholar] [CrossRef]
- Shinde, V.; Sainkar, S.; Patil, P. Corrosion protective poly(o-toluidine) coatings on copper. Corros. Sci. 2005, 47, 1352–1369. [Google Scholar] [CrossRef]
- Tan, A.; Soutar, A. Hybrid sol-gel coatings for corrosion protection of copper. Thin Solid Film 2008, 516, 5706–5709. [Google Scholar] [CrossRef]
- Rahman, A.; Jayaganthan, R.; Prakash, S.; Chawla, V.; Chandra, R. Cyclic high temperature oxidation behaviour of sputtered Cr/Al multilayer coatings on superalloy. Surf. Eng. 2011, 27, 393–401. [Google Scholar] [CrossRef]
- Chaliampalias, D.; Andronis, S.; Stergioudis, G.; Tsipas, D.; Vourlias, G.; Pavlidou, E. Deposition of multilayer NiCrBSiFe and Al coatings on low carbon steels. In Proceedings of the MC2011 Microscopy Congress, Kiel, Germany, 28 August–2 September 2011. [Google Scholar]
- Suwwan de Felipe, T.; Murarka, S.P.; Bedell, S.; Lanford, W.A. Capacitance-voltage, current voltage, and thermal stability of copper alloyed with aluminum or magnesium. Thin Solid Films 1998, 335, 49–53. [Google Scholar] [CrossRef]
- Arcot, Β.; Murarka, S.P.; Clevenger, L.A.; Hong, Q.Z.; Ziegler, W.; Harper, J.M.E. Intermetallic formation in copper/magnesium thin films-kinetics, nucleation and growth, and effect of interfacial oxygen. J. Appl. Phys. 1994, 76, 5161. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Lu, H.M.; Jiang, Q.; Mimura, K.; Isshiki, M. Effect of alloying Mg on corrosion resistance of Cu at high temperature. J. Electrochem. Soc. 2007, 154, C153–C158. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Han, Y.F.; Liu, B.X. Modification of oxidation resistance of copper films by shallow implantation. J. Appl. Phys. 2001, 90, 1638. [Google Scholar] [CrossRef]
- Chiang, K.-T.; Kallenborn, K.J.; Yuen, J.-L. Aluminization of copper for oxidation protection. Surf. Coat. Technol. 1992, 52, 135–139. [Google Scholar] [CrossRef]
- Gembalski, S. Diffusion aluminizing of steel, cast iron, copper and titanium. Met. Sci. Heat Treat. 1967, 9, 646–651. [Google Scholar] [CrossRef]
- Abd El-Azim, M.E.; Soliman, H.M. Pack aluminizing of copper. J. Mater. Technol. 1997, 13, 127–132. [Google Scholar]
- Shi, Z.; Wang, D. Surface dispersion hardening Cu matrix alloy. Appl. Surf. Sci. 2000, 167, 107–112. [Google Scholar]
- Çorlu, B.; Ürgen, M. Modification of copper surfaces with cathodic arc aluminum plasma. Surf. Coat. Technol. 2010, 205, 540–544. [Google Scholar] [CrossRef]
- Ding, P.J.; Wang, W.; Lanford, W.A.; Hymes, S.; Murarka, S.P. Thermal annealing of buried Al barrier layers to passivate the surface of copper. Appl. Phys. Lett. 1994, 65, 1778. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwon, Y.N. Solid-state bonding between Al and Cu by vacuum hot pressing. Trans. Nonferrous Met. Soc. China 2013, 23, 341–346. [Google Scholar] [CrossRef]
- Stathokostopoulos, D.; Chaliampalias, D.; Pavlidou, E.; Hatzikraniotis, E.; Stergioudis, G.; Paraskevopoulos, K.M.; Vourlias, G. Formation of Mg2Si thick films on Si substrates using pack cementation process. In Proceedings of the AIP Conference, Thessaloniki, Greece, 28–30 September 2011; pp. 203–206. [Google Scholar]
- He, M.; Liu, L.; Wu, Y.; Zhong, C.; Hu, W. Influence of microstructure on corrosion properties of multilayer Mg-Al intermetallic compound coating. Corros. Sci. 2011, 53, 1312–1321. [Google Scholar] [CrossRef]
- Cultrera, L.; Pereira, A.; Ristoscu, C.; Clozza, A.; Tazzioli, F.; Vicario, C. Pulsed laser deposition of Mg thin films on Cu substrates for photocathode applications. Appl. Surf. Sci. 2005, 248, 397–401. [Google Scholar] [CrossRef]
- Stathokostopoulos, D.; Chaliampalias, D.; Pavlidou, E.; Chrissafis, K.; Stergioudis, G.; Patsalas, P.; Vourlias, G. Protection of Cu components with Mg and Al coatings deposited by pack cementation. Surf. Eng. 2014, 30, 886–892. [Google Scholar] [CrossRef]
- Stathokostopoulos, D.; Chaliampalias, D.; Pavlidou, E.; Vourlias, G.; Stergioudis, G. Structural study of magnesium coatings on copper substrates by pack cementation. Solid State Phenom. 2013, 203–204, 9–12. [Google Scholar] [CrossRef]
- Nordlien, J.; Ono, S.; Masuko, N.; Nisancioglu, K. A TEM investigation of naturally formed oxide films on pure magnesium. Corros. Sci. 1997, 39, 1397–1414. [Google Scholar] [CrossRef]
- Eliezer, D.; Alves, H. Corrosion and oxidation of magnesium alloys. In Handbook of Materials Selections; Kurtz, M., Ed.; Wiley: New York, NY, USA, 2002; pp. 267–292. [Google Scholar]
- Xu, C.; Gao, W. Pilling-bed worth ratio for oxidation of alloys. Mater. Res. Innov. 2000, 3, 231–235. [Google Scholar] [CrossRef]
- Makar, G.L.; Kruger, J. Corrosion of magnesium. Int. Mater. Rev. 1993, 38, 138–153. [Google Scholar] [CrossRef]
- Zhang, S.; Pisch, A.; D’hemle, F. Oxidation of refractory intermetallic compounds: Kinetics and thermodynamics. Philos. Mag. A 1996, 73, 709–722. [Google Scholar] [CrossRef]
- Pieraggi, B. Calculations of parabolic reaction rate constants. Oxid. Met. 1987, 27, 177–185. [Google Scholar] [CrossRef]
- Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Chrissafis, K. Examination of the oxidation resistance of Cr-Mo-V tool steel by thermal analysis. J. Therm. Anal. Calorim. 2011, 108, 677–684. [Google Scholar] [CrossRef]
- Pieraggi, B.; Rapp, R. Chromia scale growth in alloy oxidation and the reactive element effect. J. Electrochem. Soc. 1993, 140, 2844–2850. [Google Scholar] [CrossRef]
- Kofstad, P. High Temperature Corrosion, 3rd ed.; Elsevier: New York, NY, USA, 1988; pp. 250–281. [Google Scholar]
- Vogiatzis, C.; Skolianos, S. Electrochemical evaluation of sintered aluminium–ceramic cenospheres composites. Corros. Eng. Sci. Technol. 2017, 52, 90–98. [Google Scholar] [CrossRef]
- Revie, R.W.; Elboujdaini, M.; Ghali, E.; Yousri, E. An electrochemical method to control the anodizing process. In Materials Performance Maintenance; Elsevier: Toronto, ON, Canada, 1991. [Google Scholar]
- Song, G.L. Corrosion of Magnesium Alloys; Wood head Publishing Limited: Cambridge, UK, 2011; pp. 117–165. [Google Scholar]
- Nagiub, A. Evaluation of corrosion behavior of copper in chloride media using electrochemical impedance spectroscopy (EIS). Port. Electrochim. Acta 2005, 23, 301–314. [Google Scholar] [CrossRef]
T/°C | |
---|---|
550 | 41.3 × 10−4 |
600 | 82 × 10−4 |
650 | 205.2 × 10−4 |
700 | 246.9 × 10−4 |
T/°C | |
---|---|
800 | 185.2 × 10−4 |
850 | 261.2 × 10−4 |
900 | 300.6 × 10−4 |
950 | 385.7 × 10−4 |
Type of Sample | EOCP (mV vs. SCE) | Ecorr (mV vs. SCE) | icorr (μΑ/cm2) | βα | −βc | Corrosion Rate (mpy) |
---|---|---|---|---|---|---|
Pure copper | −200 | −170 | 3 | 46 | 53 | 1.38 |
Mg coat. | −210 | −220 | 0.9 | 58 | 56 | 0.9 |
Al coat. | −311 | −330 | 1 | 83 | 80 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathokostopoulos, D.; Vogiatzis, C.A.; Chrissafis, K.; Skolianos, S.; Vourlias, G.; Chaliampalias, D. Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments. Coatings 2021, 11, 337. https://doi.org/10.3390/coatings11030337
Stathokostopoulos D, Vogiatzis CA, Chrissafis K, Skolianos S, Vourlias G, Chaliampalias D. Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments. Coatings. 2021; 11(3):337. https://doi.org/10.3390/coatings11030337
Chicago/Turabian StyleStathokostopoulos, Dimitrios, Christos A. Vogiatzis, Konstantinos Chrissafis, Stefanos Skolianos, George Vourlias, and Dimitrios Chaliampalias. 2021. "Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments" Coatings 11, no. 3: 337. https://doi.org/10.3390/coatings11030337
APA StyleStathokostopoulos, D., Vogiatzis, C. A., Chrissafis, K., Skolianos, S., Vourlias, G., & Chaliampalias, D. (2021). Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments. Coatings, 11(3), 337. https://doi.org/10.3390/coatings11030337