Optical Temperature Sensing of YbNbO4:Er3+ Phosphors Synthesized by Hydrothermal Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, Y.; Han, Q.; Hao, S.; Chen, T.; Zhu, Y.; Wang, Z.; Yang, C. Dual-Mode upconversion nanoprobe enables broad-range thermometry from cryogenic to room temperature. ACS Appl. Mater. Inter. 2019, 11, 42455. [Google Scholar] [CrossRef] [PubMed]
- Pan, E.; Bai, G.; Wang, L.; Lei, L.; Chen, L.; Xu, S. Lanthanide ion-doped bismuth titanate nanocomposites for ratiometric thermometry with low pump power density. ACS Appl. Nano Mater. 2019, 2, 7144. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y. Y4.67Si3O13-based phosphors: Structure, morphology and upconversion luminescence for optical thermometry. J. Am. Ceram. Soc. 2019, 102, 5471. [Google Scholar] [CrossRef]
- Liu, L.; Tang, D.; Xu, L.; Khan, F.; Din, I.U.; Wang, Z.; Li, P.; Li, H.; Zhao, E.; Zhang, Y. Novel optical thermometer through upconversion emission of Ho3+ sensitized by Nd3+. J. Lumin. 2019, 213, 40. [Google Scholar] [CrossRef]
- Bastos, R.N.; Brites, C.D.S.; Rojas-Gutierrez, P.A.; DeWolf, C.; Ferreira, R.A.S.; Capobianco, J.A.; Carlos, L.D. Thermal properties of lipid bilayers determined using upconversion nanother-mometry. Adv. Funct. Mater. 2019, 29, 1905474. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, K.; Dwivedi, A.; Bahadur, A.; Yadav, T.P.; Rai, S.B. Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor. Ceram. Int. 2018, 44, 9633. [Google Scholar] [CrossRef]
- Liu, S.; Cui, J.; Jia, J.; Fu, J.; You, W.; Zeng, Q.; Yang, Y.; Ye, X. High sensitive Ln3+/Tm3+/Yb3+ (Ln3+ = Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram. Int. 2019, 45, 1. [Google Scholar] [CrossRef]
- Tong, L.; Li, X.; Zhang, J.; Xu, S.; Sun, J.; Cheng, L.; Zheng, H.; Zhang, Y.; Zhang, X.; Hua, R.; et al. Microwave-assisted hydrothermal synthesis, temperature quenching and laser-induced heating effect of hexagonal microplate β-NaYF4: Er3+/Yb3+ microcrystals under 1550 nm laser irradiation. Sensor. Actuat. B Chem. 2017, 246, 175. [Google Scholar] [CrossRef]
- Liu, X.; Lei, R.S.; Huang, F.F.; Deng, D.G.; Wang, H.P.; Zhao, S.L.; Xu, S.Q. Upconversion luminescence, intrinsic optical bistability, and optical thermometry in Ho3+/Yb3+:BaMoO4 phosphors. Chin. Opt. Lett. 2019, 17, 11. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Kaczmarek, M.K.; van Deun, R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing. Nanoscale 2019, 11, 833. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, R.; Zhang, J.; Wang, Z.; Zhang, Z.; Ding, Z. Pressure and temperature study on the structural stability of GdNbO4:Eu3+. J. Phys. Chem. C 2017, 121, 14787. [Google Scholar] [CrossRef]
- Brunckova, H.; Mudra, E.; Medvecky, L.; Kovalcikova, A.; Durisin, J.; Sebek, M.; Girman, V. Effect of lanthanides on phase transformation and structural properties of LnNbO4 and LnTaO4 thin films. Mater. Des. 2017, 134, 455. [Google Scholar] [CrossRef]
- Brunckova, H.; Kolev, H.; Rocha, L.A.; Nassar, E.J.; Moscardini, S.B.; Medvecky, L. XPS characterization and luminescent properties of GdNbO4 and GdTaO4 thin films. Appl. Surf. Sci. 2020, 504, 144358. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, H.; Zhou, J.; Wang, T.; Huang, D.; Wu, Y.; Sun, L.; Zhou, G.; Hu, J.Z.J. Enhanced anti-stocks luminescence in LaNbO4:Ln3+ (Ln3+ = Yb3+, Er3+/Ho3+/Tm3+) with abundant color. RSC Adv. 2017, 7, 16777. [Google Scholar] [CrossRef] [Green Version]
- Carmo, F.F.d.; Nascimento, J.P.C.d.; Façanha, M.X.; Sales, T.O.; Santos, W.Q.; Gouveia-Neto, A.S.; Jacinto, C.; Sombra, A.S.B. White light upconversion emission and color tunability in Er3+/Tm3+/Yb3+ tri-doped YNbO4 phosphor. J. Lumin. 2018, 204, 676. [Google Scholar] [CrossRef]
- Mao, J.; Jiang, B.; Wang, P.; Qiu, L.; Abass, M.T.; Wei, X.; Chen, Y.; Yin, M. Study on temperature sensing performance based on the luminescence of Eu3+ and Er3+ co-doped YNbO4. Dalton Trans. 2020, 49, 8194. [Google Scholar] [CrossRef]
- Jakeš, V.; Rubešová, K.; Hlásek, T.; Polák, V.; Oswald, J.; Nádherný, L. Thin films of ErNbO4 and YbNbO4 prepared by sol-gel. J. Sol Gel. Sci. Technol. 2016, 78, 600. [Google Scholar] [CrossRef]
- Caixeta, F.; Bastos, A.R.N.; Botas, A.M.P.; Rosa, L.S.; Souza, V.S.; Borges, F.H.; Neto, A.N.C.; Ferrier, A.; Goldner, P.; Carlos, L.D.; et al. High-Quantum-yield upconverting Er3+/Yb3+-Organic−inorganic hybrid dual coatings for real-time temperature sensing and photothermal conversion. J. Phys. Chem. C 2020, 124, 19892–19903. [Google Scholar] [CrossRef]
- Siqueira, K.P.F.; Moreira, R.L.; Dias, A. Synthesis and crystal structure of lanthanide orthoniobates studied by vibrational spectroscopy. Chem. Mater. 2010, 22, 668. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Ji, Y.; Liu, F.; Liu, W.; Sun, J.; Liu, X. Hydrothermal approach and luminescent properties for the synthesis of orthoniobates GdNbO4:Ln3+ (Ln = Dy, Eu) single crystals under high-temperature high-pressure conditions. New J. Chem. 2014, 38, 4249. [Google Scholar] [CrossRef]
- Jehng, J.M.; Wachs, I.E. Structural chemistry and raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N.G. Raman spectrum of the high temperature form of Nb2O5. J. Mater. Sci. 1982, 1, 374. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.; Church, J.S.; Li, Y. Characterization of oxides on niobium by raman and infrared spectroscopy. Electrochim. Acta 1999, 44, 2571. [Google Scholar] [CrossRef]
- Gu, J.J.; Steiner, D.; Mogonye, J.E.; Aouadi, S.M. Precipitation-induced healing of Nb2O5. J. Eur. Ceram. Soc. 2017, 37, 4141–4146. [Google Scholar] [CrossRef]
- Yan, A.; Wu, P.; Zhang, S.; Liang, L.; Yang, F.; Pei, Y.L.; Chen, S. Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 2013, 114, 193502. [Google Scholar] [CrossRef]
- Nascimento, J.P.C.; Sales, A.J.M.; Sousa, D.G.; da Silva, M.A.S.; Moreira, S.G.C.; Pavani, K.; Soares, M.J.; Graça, M.P.F.; Kumar, J.S.; Sombra, A.S.B. Temperature-, power-, and concentration dependent two and three photon upconversion in Er3+/Yb3+ co-doped lanthanum ortho-niobate phosphors. RSC Adv. 2016, 6, 68160. [Google Scholar] [CrossRef]
- Kocsor, L.; Péter, L.; Corradi, G.; Kis, Z.; Gubicza, J.; Kovács, L. Mechanochemical reactions of lithium niobate induced by high-energy ball-milling. Crystals 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, C.; Xu, Z.; Cheng, Z.; Lin, J. Facile synthesis, growth mechanism and luminescence properties of uniform La(OH)3:Ho3+/Yb3+ and La2O3:Ho3+/Yb3+ nanorods. CrystEngComm 2010, 12, 4208. [Google Scholar] [CrossRef]
- Xu, B.X.; Song, C.; Song, J.; Huang, R.C.; Liu, J.; Lin, Z.X.; Zhang, Y.; Song, J.; Li, H.L. Effect of Rb+ Doping on Tunable Luminescence in Yb3+/Er3+-Y2O3 Film. Coatings 2020, 10, 1137. [Google Scholar] [CrossRef]
- Dong, J.; Li, Y.; Zheng, W.; Wang, R.; Xu, Y. Lower power dependent upconversion multicolor tunable properties in TiO2:Yb3+/Er3+/ (Tm3+). Ceram. Int. 2019, 45, 432. [Google Scholar] [CrossRef]
- dos Santos, P.V.; Gouveia, E.A.; de Araujo, M.T.; Gouveia-Neto, A.S.; Sombra, A.S.B.; Neto, J.A.M. Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3+/Yb3+-codoped chalcogenide glass. Appl. Phys. Lett. 1999, 74, 3607. [Google Scholar] [CrossRef]
- Lü, Y.; Tang, X.; Yan, L.; Li, K.; Liu, X.; Shang, M.; Li, C.; Lin, J. Synthesis and luminescent properties of GdNbO4:RE3+ (RE = Tm, Dy) nanocrystalline phosphors via the Sol-Gel process. J. Phys. Chem. C 2013, 117, 21972. [Google Scholar] [CrossRef]
- Guo, J.; Ren, J.; Cheng, R.; Dong, Q.; Gao, C.; Zhang, X.; Guo, S. Growth, structural and thermophysical properties of TbNbO4 crystals. CrystEngComm. 2018, 20, 1455. [Google Scholar] [CrossRef]
- Zhao, X.; Suo, H.; Zhang, Z.; Guo, C. Spectral pure RGB up-conversion emissions in self-assembled Gd2O3:Yb3+, Er3+/Ho3+/Tm3+ 3D hierarchical architectures. Ceram. Int. 2018, 44, 2911. [Google Scholar] [CrossRef]
- Peng, H.; Ding, B.; Ma, Y.; Sun, S.; Tao, W.; Guo, Y.; Guo, H.; Yang, X.; Qian, H. Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb @NaNdF4:Yb core-shell-shell nanoparticles for photodynamic therapy. Appl. Surf. Sci. 2015, 357, 2408. [Google Scholar] [CrossRef]
- Chen, G.; Somesfalean, G.; Liu, Y.; Zhang, Z.; Sun, Q.; Wang, F. Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals. Phys. Rev. B 2007, 75, 195204. [Google Scholar] [CrossRef]
- Gong, H.; Yang, D.; Zhao, X.; Pun, E.Y.B.; Lin, H. Upconversion color tunability and white light generation in Tm3+/Ho3+/Yb3+ doped aluminum germanate glasses. Opt. Mater. 2010, 32, 554. [Google Scholar] [CrossRef]
- Liu, G.; Sun, Z.; Fu, Z.; Ma, L.; Wang, X. Temperature sensing and bio-imaging applications based on polyethylenimine/ CaF2 nanoparticles with upconversion fluorescence. Talanta 2017, 169, 181. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Lu, C.; Chen, L.; Bai, W.; Yuan, Y.; Ji, Z. Transparent sol-gel glass ceramics containing β-NaYF4:Yb3+/Er3+ nanocrystals: Structure, upconversion luminescent properties and optical thermometry behavior. Ceram. Int. 2018, 44, 16379. [Google Scholar] [CrossRef]
- Tian, X.; Dou, H.; Wu, L. Non-contact thermometry with dual-activator luminescence of Bi3+/Sm3+: YNbO4 phosphor. Ceram. Int. 2020, 46, 10641. [Google Scholar] [CrossRef]
- Du, P.; Huang, X.; Yu, J.S. Yb3+-Concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol-gel method. Inorg. Chem. Front. 2017, 4, 1987. [Google Scholar] [CrossRef]
- Du, P.; Luo, L.; Yu, J.S. Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics. J. Alloys Compd. 2015, 632, 73. [Google Scholar] [CrossRef]
- Du, P.; Deng, A.M.; Luo, L.; Yu, J.S. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J. Chem. 2017, 41, 13855. [Google Scholar] [CrossRef]
- Zou, Z.; Wu, T.; Lu, H.; Tu, Y.; Zhao, S.; Xie, S.; Han, F.; Xu, S. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals. RSC Adv. 2018, 8, 7679. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Singh, S.K.; Gupta, B.K.; Prakash, R.; Rai, S.B. Probing a highly efficient dual mode: Down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors. Dalton Trans. 2013, 42, 1065. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Tang, X.; Zhang, H.; Li, X.; Qian, Y. Optical Temperature Sensing of YbNbO4:Er3+ Phosphors Synthesized by Hydrothermal Method. Coatings 2021, 11, 383. https://doi.org/10.3390/coatings11040383
Ji H, Tang X, Zhang H, Li X, Qian Y. Optical Temperature Sensing of YbNbO4:Er3+ Phosphors Synthesized by Hydrothermal Method. Coatings. 2021; 11(4):383. https://doi.org/10.3390/coatings11040383
Chicago/Turabian StyleJi, Heming, Xunze Tang, Haiyan Zhang, Xiaolong Li, and Yannan Qian. 2021. "Optical Temperature Sensing of YbNbO4:Er3+ Phosphors Synthesized by Hydrothermal Method" Coatings 11, no. 4: 383. https://doi.org/10.3390/coatings11040383
APA StyleJi, H., Tang, X., Zhang, H., Li, X., & Qian, Y. (2021). Optical Temperature Sensing of YbNbO4:Er3+ Phosphors Synthesized by Hydrothermal Method. Coatings, 11(4), 383. https://doi.org/10.3390/coatings11040383