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Abstract: SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor
deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2

thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n
and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range
380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at
500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by
changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size
on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from
0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min.
The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the
step height, the smaller the conformality of SiO2 thin films.

Keywords: conformality; plasma-enhanced chemical vapor deposition (PECVD); silicon dioxide
(SiO2); optical thin films

1. Introduction

SiO2 is a commonly used optical thin film material with low refractive index. SiO2
thin films have many advantages, such as high light transmittance, good insulation, good
dielectric properties, and strong corrosion resistance. At present, SiO2 thin films have
been widely used in optical film devices, electronic devices, integrated devices, sensors,
and other fields [1–6]. However, several new applications for SiO2 thin films will require
conformal coverage (good conformality) of micro- and nano-scale features in the substrate.
Conformality, conformal coverage, or step coverage are important for many applications
such as array optical filters, microelectronics [7–9], integrated circuit technologies [10,11],
and nano-imprint lithography [12,13]. The main methods of preparing SiO2 thin films are
physical vapor deposition (PVD), chemical vapor deposition (CVD), Sol-Gel method, and
liquid precipitation deposition (LPD) [14–17]. Generally, when the thin film is deposited
on a patterned substrate with CVD technology, it is easy to obtain good conformality, while
it is difficult with PVD [18,19].

The conformality or step coverage has been previously reported to depend on deposi-
tion parameters, including deposition temperature, total gas flow, and substrate material.
Levin et al. studied the relationship between deposition pressure and step coverage of SiO2
thin films prepared by CVD [20]. Gao et al. studied the effects of precursors and substrate
materials on step covering in metal organic chemical vapour deposition (MOCVD) [21].
Machida improved the film step covering by adding bias [22]. Bierner et al. studied the
effect of the ratio of gaseous reactants on step coverage in the PECVD of silicon nitride [23].
Özkol et al. deposited hydrogenated amorphous silicon (a-Si:H) films by PECVD and
studied the relationship between the conformality of a-Si:H films and deposition tempera-
ture [24]. However, the effect of deposition rate, especially substrate size characteristics on
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the conformality of SiO2 thin films, has rarely been addressed. Furthermore, Siriwongrung-
son, et al. [25] proposed a quantitative measure of the conformality of the thin film deposit
over any shape of feature. Conformality is calculated based on a statistical analysis of a
number of film thickness measurements of a fracture surface over the features of interest.
However, in this method, film thickness is measured by a field emission scanning electron
microscope (FESEM). Moreover, it is required to give the thickness of the film at many
points on a fracture surface.

In this work, the new method to quantitatively measure the conformality of thin films
on patterned substrate is proposed. The optical properties of silicon dioxide thin films
prepared by PECVD were investigated, and the influence of deposition rate and the size of
substrate steps on the conformality of the thin films were emphatically analyzed.

2. Analysis Methods

The step coverage is generally defined as the ratio of the film thickness at the trench
bottom to the thickness on the flat at the trench mouth opening, as shown in Figure 1a.
Krumdieck, et al. [25,26] proposed a quantitative step coverage assessment method to de-
scribe the conformality of a sample in the dimension of interest. This method of measuring
conformality is a statistical method, so it requires measuring the thickness of a large number
of films at different locations. Conformality is calculated based on a statistical analysis of a
number of film thickness measurements of a fracture surface over the features of interest,
as shown in Figure 1b. Conformality (C1) can be written as shown in Equation (1) [26].

C1 = 1−

M
∑

i=1

∣∣δi − δ
∣∣

M
∑

i=1
δi

(1)

where M is the number of film thickness measurements, δi is the film thickness measured
at point i, and δ is the average film thickness calculated from all of the measurements. We
propose another method to quantitatively measure the conformality of thin films deposited
on the surface of steps, as shown in Figure 1c. Conformality (C2) can be written as

C2 = 1− |α− β|
β

(2)

where β is the angle between the bottom edge of the step and the side of the step on the
cross section of the basement step before coating and α is the angle between the side and
the bottom of the step on the cross section after coating. d and l are can been measured
on a cross section using Hitachi SU1510 scanning electron microscope (SEM, Hitachi,
Ibaraki, Japan), or can been measured by Surface Profiler (Taylor Hobson, Leicester, UK),
α = arctan(d/l).
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Figure 1. Description of the measurement of step coverage and conformality. (a) Step coverage,
(b) conformality proposed by S. P. Krumdieck, and (c) conformality proposed in this work.

3. Experimental Details

SiO2 thin films are deposited using PECVD technique, from appropriated gaseous
mixtures of silane (SiH4, purity, 99.999%) and nitrous oxide (N2O, purity, 99.99%). The film
deposition equipment is a PD-220 PECVD system produced by SAMCO (Kyoto, Japan), as
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shown in Figure 2 schematically. The reaction system is a parallel planar discharge system.
The upper electrode is connected to a 13.56 MHz rf power supply, and the lower electrode
supports the substrate and is connected to a 13.56 MHz RF bias power supply. The substrate
is arranged on a tray and the heating system under the tray heats the substrate. Before
SiO2 thin films deposition, the substrate is bombarded for about 5 min with N2 discharge
(discharge pressure: 5 × 10−2 Pa) of 80 W RF power to improve adhesion between the
film and the substrate [27]. The substrate is a single crystal silicon sheet patterned through
lithography and etching to obtain step shaped profile. SiO2 thin films are deposited by
reaction of silane and nitrous oxide, in which the flow rate of SiH4 is 50 sccm, the flow
rate of N2O is 70 sccm, the RF power is 150 W, and the operating temperature is 250 ◦C. In
order to study the effect of the deposition rate of the SiO2 thin film on the conformality,
the gas flow ratio SiH4:N2O (50:70), reaction temperature (250 ◦C), and RF power are kept
constant, and the reaction pressure is only changed between 80 and 120 Pa.
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Figure 2. A schematic diagram of the RF PECVD equipment.

The core levels of Si 2p, O 1s, and C 1s are analyzed and the structure of the SiO2
thin films is characterized by X-ray photoelectron spectroscopy (XPS). XPS analysis is
performed on a vacuum generators (Fisons Instruments, Loughborough, UK) MT-500
with a non-monochromatic Al X-ray source (Kα 1486.6 keV) and a CLAM-2 hemispherical
analyzer for electron detection. The samples are supported on carbon adhesive tape.
The refractive index n, extinction coefficient k, and thickness d of SiO2 thin films are
characterized using a J.A. Woollam M-2000UI (J.A.Woollam, Lincoln, USA) variable angle
spectroscopic ellipsometer (VASE) in the wavelength region between 380 and 1600 nm.
The cross-section of SiO2 thin films is observed by a scanning electron microscopy (SEM).
Substrate microstructure and SiO2 thin film surface profile are measured by Taylor Hobson
TalySurf CCI-2000 (Taylor Hobson, Leicester, UK) surface profilometer.

4. Results and Discussion

The stoichiometry of silicon oxide thin film is determined by the XPS using the Si 2p
and O 1s binding energy. Figure 3 shows the XPS spectrum of the silicon oxide thin film
deposited at a substrate temperature of 250 ◦C. The XPS results showed that (Figure 3a) Si
2p has a peak at 103.3 eV and (Figure 3b) O 1s has a peak value at 533.1 eV, indicating that
the deposited silicon oxide thin films are SiO2 thin films [28]. In case of stoichiometry SiO2
thin film, the silicon atom surrounded by four oxygen atoms has a characteristic binding
energy (103.3 eV).
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The optical constants n and k are determined by fitting the ellipsometer parameters
in the wavelength region from 380 to 1600 nm. Figure 4 shows the refractive index n and
extinction coefficient k of SiO2 thin films deposited at a substrate temperature of 250 ◦C,
discharge power 150 W, and working pressure 100 Pa. As can be seen from Figure 4, both
the refractive index and extinction coefficient of SiO2 film change with the wavelength,
which indicates that the SiO2 film has a certain dispersion. The refractive index and
extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069,
respectively. The results show that the deposited SiO2 thin films can be used in optical
films with low refractive index.
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SiO2 thin films are deposited at the flow ratio of 50/70 of SiH4 and N2O; the substrate
temperature is 250 ◦C; the RF discharge power is 150 W; and the reaction pressure is 80,
90, 100, 110, and 120 Pa, respectively. The deposition rates of SiO2 thin films are 20.84,
25.76, 30.91, 33.04, and 41.92 nm/min, respectively. SiO2 thin films of 600 nm thickness
are deposited at different deposition rates on linear array micro-structural substrate with a
height of 1000 nm and widths of 3, 5, and 10 µm, respectively. The deposition rates of SiO2
thin films are 20.84, 25.76, 30.91, 33.04, and 41.92 nm/min, respectively. Based on this, the
effects of deposition rates on the complex properties are studied.

The SEM images are used to estimate the film thickness at the top surface, side walls,
and bottom of 15 different positions on the substrate step, and the conformality (C1) is
calculated by Equation (1). The surface contour of SiO2 thin films is measured by surface
profilometer, and the conformality (C2) is obtained by Equation (2). Figure 5 shows the
image measured by surface profilometer of 600 nm SiO2 thin films deposited on an array
substrate with a height of 1000 nm and width of 5 µm and deposition rate of 41.92 nm/min.
As can be seen from Figure 5, the SiO2 thin films with good conformality can be grown
on linear array microstructure substrate at a deposition rate of 41.92 nm/min. Figure 6
shows the conformality results as a function of deposition rate. As can be seen from the
Figure 6, under the same conditions, the conformality (C1) calculated by Equation (1)
is slightly less than the value of the conformality (C2) calculated by Equation (2). The
conformality (C1) and (C2) of the SiO2 thin films deposited on the substrate with a step
height of 1000 nm and a step width of 3 µm is approximately 0.86 and 0.89, respectively,
when the deposition rate of SiO2 thin film is 41.92 nm/min. Moreover, the conformality
of the SiO2 thin films increases with the increase of deposition rate. The conformality of
SiO2 thin films is proportional to the deposition rate. As expected, at higher deposition
rate, the surface reaction is the rate limiting step which produces conformal coverage of
the step shapes.
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When the deposition rate of SiO2 thin films is 30.91 nm/min, SiO2 thin films of
different thicknesses are deposited on 30 substrates of 6 different surface structures with
step widths of 3, 5, and 10 µm and step heights of 500 and 1000 nm, respectively. Figure 7
shows the conformality (C2) as a function of SiO2 thin film thickness. In Figure 7, the
conformality of all SiO2 thin film samples are calculated by Equation (2). The conformality
is inversely dependent on SiO2 thin film thicknesses. Within a certain range, the thinner
the film, the better the conformality; the increase of film thickness, the shadow effect, and
the inherent characteristics of film growth will make the conformality decrease. Moreover,
the conformality of SiO2 thin films on the substrate with a step height of 1000 nm is lower
than that on the substrate with a step height of 500 nm. At the same step height, the step
width has little effect on the conformality of SiO2 thin films. When the height of the step is
500 nm and the width of the step is 5 µm, the conformality of SiO2 thin films with thickness
of 104 nm is 0.92 and that of the SiO2 thin films with thickness of 521 nm is 0.71.
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