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Abstract: The recent development of several methods for extracting curcumin from the root of the
plant Curcuma longa has led to intensified research on the properties of curcumin and its fields of
application. Following the studies and the accreditation of curcumin as a natural compound with
antifungal, antiviral, and antibacterial properties, new fields of application have been developed
in two main directions—food and medical, respectively. This review paper aims to synthesize the
fields of application of curcumin as an additive for the prevention of spoilage, safety, and quality of
food. Simultaneously, it aims to present curcumin as an additive in products for the prevention of
bacterial infections and health care. In both cases, the types of curcumin formulations in the form of
(nano)emulsions, (nano)particles, or (nano)composites are presented, depending on the field and
conditions of exploitation or their properties to be used. The diversity of composite materials that can
be designed, depending on the purpose of use, leaves open the field of research on the conditioning
of curcumin. Various biomaterials active from the antibacterial and antibiofilm point of view can be
intuited in which curcumin acts as an additive that potentiates the activities of other compounds or
has a synergistic activity with them.
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1. Introduction

Curcumin has been known since antiquity and used as a spice, preservative, dye for
dyeing fabrics, and in traditional medicine. It is one of the three main colored compounds
(demethoxy and bisdemethoxy derivatives) which are extracted from Curcuma longa plant
roots grown in Asian countries. It is found in the Color Index with the names: Yellow 3
(natural compound) and Gelb 6 (synthetic), it is also known as: turmeric, curcumin, Indian
saffron, and saffron of Indians, with the reference number C.A.S. number: 458-37-7 [1].

Considering the epidemiological events caused by the appearance of the COVID-19
virus, in the last two years, there has been an intensification of studies on the methods to ob-
tain [2–20] curcumin and its bioactivity properties [21–30]. If, in 2017, the global curcumin
market was valued at USD 52.45 million, due to the diversification of application areas, it is
estimated that the size of the global curcumin market will reach USD 151.9 million by 2027.
The estimates were made after an evaluation of the increasing number of articles published
(Figure 1) on the antioxidant, anti-inflammatory, or anticancer properties, increasing the
availability and accessibility of Ayurvedic medicinal products, cosmetics, food supple-
ments, and the natural additives consumer market in developed countries. In this regard,
in North America, which is the largest market followed by Europe, food, nutritional sup-
plements, and cosmetics with the main ingredient as curcumin had the biggest sales in
2019, while India is the most important producer of curcumin extracted from turmeric and
represents more than 78% of its global production [31–34]. However, the forecasts made
have a high degree of uncertainty due to operational problems regarding the supply of
raw materials [35–37] and the distribution of finished products on the consumer market,
affected by the COVID-19 pandemic [38–40]. Curcumin is used extensively as a phyto-
chemical in studies of various diseases [28,41] and, in particular, in cancer treatments [6]
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targeting its antioxidant [42,43] and anti-inflammatory properties [43]. The current revision
is made to highlight the new fields of application regarding the exploitation of antiviral,
antifungal, and antibacterial properties. We will discuss methods of conditioning curcumin
to increase its solubility in water and the influence or synergistic action of the compounds
found in delivery systems. This study updates the conditioning methods for curcumin to
improve the photostability and solubility properties, which are important in medical and
food applications. In addition, the advantages and the need to use natural compounds in
areas related to the protection of, and contribution to, human health will be discussed.
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Figure 1. Total number of articles on “curcumin”, published between 2016 and 2020, in different databases.

2. Methods of Obtaining and Antiviral, Antifungal, and Antibacterial Activity

The study of the different types of turmeric species in the Zingiberaceae family [2–4,7]
regarding the content of bioactive compounds suggests a growing trend in the production
of curcumin in the coming years due to the development of new areas of use (Figure 2).
Due to its antioxidant and anti-inflammatory properties, curcumin is presented in many
specialized studies as a potential adjuvant for treating cancer [6] and neurodegenerative
diseases [21]. The applications of curcumin, which reflect the antioxidant properties,
are also found in the field of textile dyeing and, as a consequence, textiles with antimicrobial
or anti-UV properties were obtained [22,44]. The diversity of the application purposes of
curcumin demonstrates its versatility and the tendency for it to be used in as many areas
as possible where the presented properties can be exploited.
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By processing fresh or dried turmeric root, several methods (Table 1) for obtaining
curcumin have been developed and optimized—by extraction with solvents [2,4,5], in mi-
crowaves [4,6], in supercritical fluids [4,7,10,12], or using ultrasound [4,8,9,12]. Curcumin
derivatives can also be obtained by synthesis, the classic method being Knoevenagel con-
densation [16–18], by alternative methods in the microwave field [19], or by ultrasound
irradiation [20]. However, for food applications, compounds obtained from natural sources
by extraction with ethanol or propanol are preferred. Thus, extraction methods were stud-
ied and optimized by utilizing the principles of green chemistry [6,9], based on microemul-
sion extraction processes [45,46] without surfactants or using eutectic solvents [47–49].
The results of the studies led to the increase in the obtaining efficiency, decrease in product
price and the development of the market of its sale and of the derived products.

The extracts obtained were structurally characterized and biological activity was eval-
uated. The three main polyphenolic compounds are 1,7-bis(4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione (curcumin, 60–70%), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxy
phenyl)-1,6-heptadiene-3,5-dione (demethoxycurcumin, 20–27%), and 1,7-bis(4-hydroxyph
enyl)-1,6-heptadiene-3,5-dione (bisdemethoxycurcumin, 10–15%), along with other com-
pounds, such as heptanoide, phenylpropanoid, and terpene derivatives. Depending on the
turmeric species and the extraction method used, mixtures with different proportions of
bioactive compounds are obtained which differ in the antibacterial and antifungal activity
tested. As curcumin is the major compound among the extracted phenolic derivatives,
its structure has been the most studied. Its antioxidant, anti-inflammatory, antiviral, an-
tibacterial, or antifungal properties are determined by the presence in the structure of three
active areas, namely, the ketone central groups with keto-enol tautomerism, the two double
bonds with cis-trans isomerism, and phenolic groups at the ends of the heptanoid chain
(Figure 3).

Table 1. Methods for obtaining curcumin derivatives.

No. crt Turmeric Species
(Type of Sample) Methods Curcuminoids Yield %

(mg/g) or Particle Size (mm) Ref.

1. Curcuma longa
(dried turmeric powder)

Surfactant-free
microemulsion (1.92) [3]

2. Curcuma longa
(dried turmeric powder)

Soxhlet extraction
ternary system

76.82 (88.96)
15.48

[2,8]
[15]

3. Curcuma longa
(dried turmeric powder) Ultrasound (67.15) [8]

4. Curcuma longa
(dried turmeric powder)

Ultrasound/deep
eutectic solvents (58.87) [9]

5. Curcuma longa
(dried turmeric powder) Microwave 88(105.3) [6]

6. Dried rhizomes of C.
longa (Rajapurivariety)

Supercritical fluid
extraction (1.68) [7]

7. Curcuma aromatic Salisb Soxhlet extraction 8.34 [10]

8. Curcuma aromatic Salisb Supercritical
carbon dioxide 7.54 [10]

9. Curcuma xanthorrhizaRoxb Solvent extraction 4.98 [3]

10. Curcuma longa
(dried turmeric powder)

Pressurized liquid
extraction 0.125–0.45 [11]

11. Curcuma longa
(fresh turmeric) Solid phase - [13]

12. Curcuma longa
(extract the essential oil)

Subcritical water
extraction 90.19 [14]
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Numerous clinical and pharmacological studies have been conducted on curcumin
over time, and it has been known since 1910 that the active ingredients in turmeric extract
are curcuminoids, especially curcumin, which has been shown to be a powerful antiox-
idant. A diet containing curcumin decreases oxidative stress, through a process of the
inhibition of peroxidated lipids and the neutralization of superoxidized and hydrolyzed
radicals [7,8,43]. Despite these beneficial properties, curcumin has limited applications
due to its low solubility in water. To improve the photostability and solubility properties,
different methods of encapsulating curcumin have been experimented with. The antiviral
activity of curcumin has been studied since the 1990s, in laboratory experiments on cells,
and the results of studies have shown that this compound is active against the human
immunodeficiency virus and the hepatitis C virus; nowadays, studies are being conducted
on both RNA and DNA viruses [26,27]. In 2007, the antiviral properties were confirmed
following a study in which curcumin was tested, along with another 220 phytocompounds,
on acute respiratory syndrome associated with coronavirus (SARS-CoV). Of these, cur-
cumin is among the 20 phytocompounds, along with some diterpenes and triterpenes,
that have had significant and specific anti-SARS CoV activity [28]. In the following years,
the research improved the initial results, thus developing new types of antiviral agents in
which curcumin is linked to carbon dots [29]. The new structures act through a mechanism
of suppression of viral RNA synthesis and modification of viral protein. The coronavirus
infections can also be reduced by stimulating the production of interferon-simulating and
pro-inflammatory cytokine genes. Another method applied in antiviral treatments consists
of photodynamic inactivation using, as a photosensitizing agent, curcumin deposited on
reduced graphene oxide [30]. The potential uses of curcumin for treating the currently
circulating virus COVID-19 are currently being proposed [50,51].

Curcumin and its natural derivatives, in the form of essential oil [52,53], aqueous [54]
or alcoholic extracts [55–59], and nanocomposites [41,60–63], have been tested to eval-
uate both antifungal activity and synergistic activity with other compounds [54,55,62]
against several types of fungi found in the food field (Penicillium family, Cladosporium and
Aspergillus) [52,53,59] or in the medical field (Candida albicans) [60,61]. Thus, curcumin,
following in vitro tests, showed a strong antifungal effect through mechanisms associated
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with damage of the plasma membrane. The minimum antifungal inhibitor concentration
for the C. albicans strain is 125 µg/mL [61].

Studies on the antibacterial activity of curcumin have made significant progress in the
last decade on the types of bacteriological strains tested and the development of their areas
of use as an antibacterial and antibiofilm compound [64–118]. Biofilm is an important prob-
lem in the food and medical sectors due to the microorganisms included in the extracellular
polymer matrix attaching to different surfaces and becoming a source of contamination.
These microbial communities become very resistant to antibiotics and hygienic products,
leading to the search for new types of antimicrobial agents that are able to alter the polymer
matrix and destroy the structure of the biofilm, or for surface treatments to prevent biofilm
formation [64–66]. Several studies [67–70] in which curcumin along with other phytochemi-
cals (flavonoids, quercetin, and lutein) have been tested on different types of bacteria (Acine-
tobacter baumannii (A. baumannii), Chromobacterium violaceum (C. violaceum), and Pseudomonas
aeruginosa (P. aeruginosa)) have demonstrated an ability to inhibit biofilm formation and
decrease their virulence. Following antibacterial [71,74–78] and antibiofilm [64–71,85–88]
tests, performed against more than 100 strains, curcumin was confirmed as an antimicrobial
agent, but with selective activity. This is based on the properties of curcumin as an active
initiator of free radicals and the photogenerated reactive oxygen species (ROS). The increase
in ROS production was possible due to the structural modification of curcumin in the form
of nanoemulsions [61,90,114] or nanoparticles [62,74,87–91,96], increasing the solubility,
photostability, and permeability of its cell membranes [88,89,96,118]. Microemulsions ob-
tained by encapsulating curcumin form phospholipid acid micelles [98] (biodegradable
biosurfactant used to increase the solubility of hydrophobic drugs), which showed antimi-
crobial activity for both types of bacteria, Gram positive and Gram negative. In addition
to reducing the degradation of curcumin by approximately 95%, a synergistic effect of
curcumin with the biosurfactant was observed against P. aeruginosa strains. Several metal
complexes (Ag, Fe, Zn, Cu, and Mo) [77–83] of curcumin were tested for the evaluation of
anti-quorum and biofilm formation. Among them, copper and molybdenum complexes
showed antiviral and antimicrobial activity for a series of multidrug-resistant strains,
P. aeruginosa and Klebsiella pneumoniae (K. pneumonia), through a mechanism of action on the
dynamics, permeabilization, and depolarization of the bacterial cell membrane. In order
to improve bioactivity, curcumin was conjugated to gold nanoparticles by a new method
of nanoparticle biosynthesis. Composites with a median diameter of 20 nm, obtained
from the green synthesis of gold nanoparticles to which curcumin structures are attached,
showed higher antioxidant activity than free curcumin. Tests have shown that antibac-
terial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and
Escherichia coli, and in vitro results, are promising for use in the treatment of liver dis-
ease [119,120]. Another mode of the antibacterial action of curcumin was tested by loading
it into (meso)porous nanocomposites [96,110] and metal oxides [99–101] with a sustained
release. These showed antibacterial and antibiofilm activity through different mechanisms
of damage to the structure of the bacterial cell wall, leading to the cytoplasm discharge and
reduced cell metabolism or the production of virulence factors. Photodynamic inactivation
is an effective non-thermal sterilization technique. The method is applied by means of
blue light emitted by a diode and curcumin [102–106], as such or encapsulated [107–114],
used as a sensitizer (Figure 4). The mechanism underlying the photodynamic therapy-
mediated photoinactivation (PDT) process depends on ROS (e.g., singlet oxygen and free
radicals). Studies have found that the results of the method are based on the action of
curcumin to generate singlet oxygen [102], while PDT potentiates the activity of curcumin
against bacteria and biofilm formation [30,103–114].
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In 2016, curcumin came to the attention of researchers as a potentiator of the effect of
antibiotics through studies [115] that demonstrated the synergistic effect between curcumin
and ciprofloxacin against Gram-positive bacteria. The mechanism by which the process
occurs is due to its ability to induce ROS. Curcumin demonstrated better antibiofilm activity
than the drug nisidine and had an effect compared to that of chloramphenicol [116], with a
proven antibiofilm effect on A. baumannii following in vitro tests [67,117]. A. baumannii
is one of the most common microorganisms found in nosocomial and chronic infections,
with a high resistance to antimicrobials and antibiotics [115–118].

In this way, the direct effect of potentiating the activity of antibiotics, such as amikacin,
gentamicin, meropenem, and vancomycin, or widening their antimicrobial spectrum,
has been tested in vitro [115].

Based on these properties, the applications of curcumin have been developed in
important areas, such as in the food and medicine fields, focused on preventing disease
and maintaining human health.

3. Additive for the Prevention of Spoilage, Safety and Quality of Food

Curcumin (E100) is a food coloring, yellow-orange, with a hot and bitter taste, ap-
proved by the FAO (Food and Agriculture Organization). Restrictions imposed on the
products used in food coloring or as a color additives refer to the content of arsenic (cal-
culated as free arsenic) max. 5 mg/kg and lead (calculated as free lead) max. 20 mg/kg.
The rhizome extract of the plant, curcumin powder, has over time been used in Southeast
Asia in food preservation [1,4]. Recently, the recognition of curcumin as belonging to the
category of antifungal and antibacterial agents of natural origin has led to the diversifica-
tion, on the one hand, in the way of conditioning curcumin [121–125] and, on the other
hand, to new sectors of use, for example, as a sensor/pH indicator [126–128] in the food
field or in packaging [129–135] (Figure 5).
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Chuacharoen and Sabliov [121] conducted a comparative study of several models
of curcumin delivery. In this regard, the encapsulation systems were made in the form
of nanosuspensions, zein-based nanoparticles, and nanoemulsions, keeping the same
initial amount of curcumin and surfactant concentration for all systems. After evaluat-
ing in in vitro systems, it was found that stability depends on certain factors, of which
temperature affected the nanoemulsions the most, but the highest antioxidant effect was
in curcumin encapsulated in zein. The results of the study showed the advantages and
disadvantages of each type of encapsulation, to ease the process of choosing the delivery
system of curcumin, depending on the specific application in the food industry (Figure 6).
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The antifungal properties [42,57] and insecticidal effects [58,123] are capitalized on by
using curcumin in the form of natural extracts [42,57], nanocomposites [63,125], or deposited
on nanoparticles with metal-organic structures [45,110] to combat a series of pathogens in the
process of preserving and preventing fruit and vegetable rot [42,57,62,63] degradation.

Marchi et al. [54] tested the aqueous curcumin extract on inhibiting the growth of
the fungal biomass of some types of fungi, Penicillium paneum, Cladosporiumo xysporum,
Cladosporium subliforme, and Aspergillus chevalieri, isolated from bread. The results showed
that, due to the antifungal activity, curcumin can be used as a food additive, leading
to the extension of the shelf life of food [59]. At the same time, curcumin encapsulated
in β-cyclodextrin [122] is used in the cheese-making process or encapsulated in sodium
alginate [124] for the edible membranes of matured cheeses, without modifying their initial
characteristics. For the preservation and extension of the shelf life of meat and fish products,
packaging films are used based on gelatin [125], carboxymethylcellulose [126], or vinyl
acetate [107], with curcumin as an antimicrobial agent. Curcumin embedded in polyvinyl
acetate films has been used to obtain thin coatings with antimicrobial photodynamic
activity under white light irradiation. Embedding curcumin in polymer matrices prevents
the isomerization processes, increasing the stability and fluorescence lifetime of curcumin.
Photodynamic therapy has shown great efficiency, both in vitro and in vivo, in the process
of inactivating planktonic cells. This method can be used as a technique in the control of
pathogenic microorganisms and biofilm formation, aiming at decreasing the safety risk of
food products [42,102,107,127]. The tendencies to increase durability and improve food
safety, as well as to reduce food waste, have resulted in the development of different types
of smart packaging. These can monitor the quality of packaged products through data
carriers, indicators, or built-in sensors [128–130].

Therefore, another property of curcumin, which has found application, is the change
in color from yellow to red, as the pH changes from acidic to basic medium. Curcumin
has been used as a colorimetric indicator for food packaging [128,131] to detect alkaline
compounds produced during food spoilage. Non-woven materials with curcumin made
through the electrospinning process have been use for the detection of amines, the main
degradation compounds of fish and fishery products. Non-woven materials [128] of
polyvinylpyrrolidone (PVP) or ethylcellulose/poly (ethylene oxide) with incorporated
curcumin have been exposed to various types of volatile amines. The results showed that,
although the loading efficiency with curcumin was lower in the PVP fibers, the detection
and quantification limits were higher than in the cellulosic fibers. Intelligent packaging
with data carriers (barcode, QR-code) are widespread due to the low cost of production,
while packaging with indicators or sensors are uncommon due to the high costs of design
and production processes [129,130].

However, to compensate for these disadvantages, active packaging [131–135] has been
developed, based on materials with antioxidant [83,132,133], antimicrobial [83,132,133,135],
or anti-UV [132,135] properties which protect the packaged products from perishable
factors and extend their expiration date. To obtain these packages (Figure 7), cellulose ma-
terials were most often used in the form of nanofibers or films, in the composition of which
curcumin was integrated (bacterial cellulose-curcumin [131]; carboxymethylcellulose-
ZnO-curcumin [133]) or in encapsulated form (cellulose bacterial-protein nanoparticles
zein/curcumin [134]; cellulose nanofibers-chitosan-curcumin [135]). The treatment of
composite materials with curcumin led to the modification of their physico-chemical struc-
tures by improving the elongation properties at break, thermal stability, depending on the
concentration and type of curcumin delivery system. At the same time, the antibacterial
and antioxidant properties of biocomposites have been improved without changing the
properties of the water vapor barrier, which is an important factor for controlling humid-
ity in obtaining an unfavorable environment for the growth and development of mold,
yeast, and bacteria. The films based on different polyvinyl polymers in which curcumin
was incorporated showed a slight decrease in the properties of the water vapor barrier,
but without significantly affecting the other properties. These films have been used to
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obtain coatings that show antimicrobial photodynamic activity [107,132]. Depending on the
concentration of curcumin and temperature, an antibacterial efficiency of 93% was obtained
against S. aureus and Salmonella typhimurium (S. typhimurium) [119]. From the point of view
of the natural additives used in the food industry, curcumin is the ideal example due to its
antioxidant, antifungal, antiviral, and antibacterial properties. However, its disadvantage,
as with most phytochemicals, is its sensitivity to photodegradation and its low solubility in
aqueous media. To improve these shortcomings, research is continuing to find curcumin
delivery systems that are non-toxic and compatible with the use environments.
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4. Additive for Health Care Products

Curcumin is known in traditional medicine, especially in India, for use in treating
fever, skin infections, and to facilitate digestion due to its anti-inflammatory [6–8], an-
tiviral [26–50], and antibacterial [63,117] properties. In the last two years, because of the
COVID-19 pandemic, the congestion of hospitals has led to an increased level of noso-
comial infections [136–139]. This situation has triggered new approaches regarding the
dispersion of biofilm and in finding new ways to prevent the initial formation by modifying
the surfaces [64,65] (Figure 8). Therefore, a nanocomposite based on metal oxides [82]
or chitosan nanoparticles [127] containing curcumin have been tested. The results of the
studies showed that curcumin deposited on copper oxide nanoparticles had higher an-
timicrobial activity against Gram-positive bacteria compared to Gram-negative bacteria,
whereas in vitro tests of curcumin-releasing chitosan nanocomposites showed high activity
against mono and polymicrobial biofilms of C. albicans and S. aureus, which can proliferate
on medical silicone surfaces. Curcumin loaded on polyvinyl materials [91] or silicone
rubber [93,95] used in catheters or cosmetic implants showed high antibiofilm activity.
The results of tests performed on S. aureus strains showed antibiofilm activity of 99% at a
concentration of 500 µg/mL of curcumin nanoparticles. The action of limiting bacterial
colonization is achieved by the process of complete lysis of the bacterial cells, which has
more effective antibiofilm activity than the drug nystatin and has effects comparable to
those of chloramphenicol [116].



Coatings 2021, 11, 519 10 of 22
Coatings 2021, 11, 519 10 of 23 
 

 

 
Figure 8. The main fields of use of curcumin in the medical field and its types of formulations in 
applications. 

Recently, research on the treatment and prevention of dental diseases has made sig-
nificant progress, especially in treatments involving photodynamic therapy [105]. In this 
regard, there are many studies with significant results in which curcumin is delivered as 
microemulsions [106,108,109] or encapsulated as nanoparticles of poly lactic-co-glycolic 
acid (PLGA) [111], graphene oxide [30], or silver [80]. Composites are used as sensitizers 
in photodynamic therapy (Figure 4) with antibacterial and antibiofilm effects on several 
types of bacteria (Enterococcus faecalis (E. faecalis), Streptococcus mutans (S. mutans), Porphy-
romonas gingivalis (P. gingivalis), and Aggregatibacter actinomycetemcomitans (A. actinomy-
cetemcomitans)) commonly found in periodontitis, tooth decay in children, or endodontic 
treatments [69,71,84,85,112–114]. However, the most intense use of curcumin is found in 
skin treatments. In the past, it was used in poultices and compresses to cure various skin 
diseases, and as its antioxidant, antifungal, and antibacterial properties were confirmed, 
curcumin came to the attention of cosmetic manufacturers [140,141]. Subsequently, load-
ing systems [142–149] were developed to increase the skin penetration effect and the pho-
tostability of curcumin. Thus, after conditioning, it was introduced in cosmetics as an ac-
tive ingredient to protect the quality of the skin [59,142,143] and for the treatment of acne, 
psoriasis, or eczema [140,141]. Furthermore, studies have been directed to the field of the 
prevention and treatment of chronic wound infections, especially for diabetic patients 
where the healing process is slow [90]. However, to improve the solubility of curcumin, 
o/w nanoemulsions stabilized with PLGA [88] or N-oxide [90] have been made, which 
were tested against several types of strains (C. albicans, E. coli, and S. aureus) and showed 
antibacterial and antibiofilm activity. Mirzahosseinipour et al. [110] encapsulated curcu-
min in silica nanoparticles and used it as a sensitizer in antimicrobial PDT against plank-
tonic systems and the biofilm of P. aeruginosa and S. aureus. The results of in vitro tests 
demonstrated antimicrobial and antibiofilm activity, without any significant cytotoxic ef-
fect of nanocomposites on normal human fibroblasts; while Varaprasad et al. [75] demon-
strated the synergistic effect between silver and curcumin by increasing the antimicrobial 
activity against E. coli as carboxymethylcellulose nanocomposite films. Thus, considering 
the healing properties of curcumin, which is attributed to the presence of myofibroblast 
and enhancing fibronectin and collagen expression, the study authors developed compo-
sites with increased antibacterial efficacy. The results of the study, in vitro, showed 86% 
inhibition growth for composites loaded with silver nanoparticles and curcumin, com-
pared to other film composites which showed only 25% inhibition growth of E. coli. 

The encouraging results of studies on the action of curcumin in skin treatments has 
led to the development of another field, that of dressings and biomaterials carrying drugs 
for treating infected wounds (Table 2). Studies have continued to design different types 

Figure 8. The main fields of use of curcumin in the medical field and its types of formulations
in applications.

Recently, research on the treatment and prevention of dental diseases has made sig-
nificant progress, especially in treatments involving photodynamic therapy [105]. In this
regard, there are many studies with significant results in which curcumin is delivered as
microemulsions [106,108,109] or encapsulated as nanoparticles of poly lactic-co-glycolic
acid (PLGA) [111], graphene oxide [30], or silver [80]. Composites are used as sensi-
tizers in photodynamic therapy (Figure 4) with antibacterial and antibiofilm effects on
several types of bacteria (Enterococcus faecalis (E. faecalis), Streptococcus mutans (S. mutans),
Porphyromonas gingivalis (P. gingivalis), and Aggregatibacter actinomycetemcomitans (A. actino-
mycetemcomitans)) commonly found in periodontitis, tooth decay in children, or endodontic
treatments [69,71,84,85,112–114]. However, the most intense use of curcumin is found
in skin treatments. In the past, it was used in poultices and compresses to cure various
skin diseases, and as its antioxidant, antifungal, and antibacterial properties were con-
firmed, curcumin came to the attention of cosmetic manufacturers [140,141]. Subsequently,
loading systems [142–149] were developed to increase the skin penetration effect and the
photostability of curcumin. Thus, after conditioning, it was introduced in cosmetics as
an active ingredient to protect the quality of the skin [59,142,143] and for the treatment
of acne, psoriasis, or eczema [140,141]. Furthermore, studies have been directed to the
field of the prevention and treatment of chronic wound infections, especially for diabetic
patients where the healing process is slow [90]. However, to improve the solubility of
curcumin, o/w nanoemulsions stabilized with PLGA [88] or N-oxide [90] have been made,
which were tested against several types of strains (C. albicans, E. coli, and S. aureus) and
showed antibacterial and antibiofilm activity. Mirzahosseinipour et al. [110] encapsulated
curcumin in silica nanoparticles and used it as a sensitizer in antimicrobial PDT against
planktonic systems and the biofilm of P. aeruginosa and S. aureus. The results of in vitro
tests demonstrated antimicrobial and antibiofilm activity, without any significant cytotoxic
effect of nanocomposites on normal human fibroblasts; while Varaprasad et al. [75] demon-
strated the synergistic effect between silver and curcumin by increasing the antimicrobial
activity against E. coli as carboxymethylcellulose nanocomposite films. Thus, considering
the healing properties of curcumin, which is attributed to the presence of myofibroblast
and enhancing fibronectin and collagen expression, the study authors developed compos-
ites with increased antibacterial efficacy. The results of the study, in vitro, showed 86%
inhibition growth for composites loaded with silver nanoparticles and curcumin, compared
to other film composites which showed only 25% inhibition growth of E. coli.

The encouraging results of studies on the action of curcumin in skin treatments has
led to the development of another field, that of dressings and biomaterials carrying drugs
for treating infected wounds (Table 2). Studies have continued to design different types of
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structures and platforms which allow them to be loaded with drugs or adjuvants to speed
up the healing process.

Table 2. Types of composite materials used as a support loaded with curcumin, used in bandages
or dressings.

No. crt Polymer Support
Target

Microorganisms/Potential
Application

Ref.

1. chitosan/pluronic membranes S. aureus, P. aeruginosa/healing
applications [150]

2. chitosan/polycaprolactone S. aureus/healing properties [151]

3. hyaluronic acid modified pullulan polymers E. coli, S. aureus/accelerating
skin wound healing [152]

4
lactide-co-glycolide

/chitosan/β-cyclodextrin/poly(vinyl
alcohol)

blend films [153,154]

5. chitosan-collagen, gelatin, sodium alginate S. aureus, E. coli [155–157]

6. polyvinyl pyrrolidone(PVP)-cerium nitrate
hexahydrate

S. aureus, E. coli/
dressing material-anti-scar

property
[156]

7.
cellulose

hydroxypropyl-β-cyclodextrin-silver
nanoparticle

S. aureus, P. aeruginosa, C.
auris/healing properties [158]

8. Metal oxides-NPs-cotton MERSA, S. aureus, E. coli [159–162]

9. cellulose-zinc oxide S. aureus, T. rubrum/skin
infection [161]

10. graphene oxide S. aureus, E. coli [163]

11.
3-methyl-1-

(hexadecyloxycarbonylmethyl)imidazolium
bromide

hydrogel used for the wound
healing [164]

12. sodium alginate wound healing applications [165]

15. thiocarbohydrazide gelatin nanofibers E. coli/wound healing
applications [166]

16. bacterial nanocellulose S. aureus, E. coli [167]

17. oleic acid based polymeric bandage wound healing [168]

Simultaneously, the mechanical properties of resistance, cytotoxicity, absorption ca-
pacity, and release of bioactive compounds must be monitored. For this, composites based
on curcumin-loaded chitosan have been designed and incorporated into Pluronic [150] or
polycaprolactone [151] copolymers that lead to membranes with good thermomechanical
properties and sustained release of curcumin. Test results in vitro against S. aureus and
P. aeruginosa, most commonly present in chronic wounds, showed that curcumin retention
was higher in the epidermis than in the dermis. Pullulan-type polymers [152] modified
with hyaluronic acid have been used to make films with specific properties, to speed up
the wound healing process and fight infections. The addition of curcumin to the compo-
sition of the films and their testing, in vivo, showed an improvement in biocompatibility,
and antibacterial and antioxidant activities.

Another type of film obtained from poly nanofibers (lactide-co-glycolide) loaded
with curcumin and heparin have been successfully tested for wound healing in diabetic
mice [153]. The polyvinyl alcohol-chitosan-curcumin-β-cyclodextrin films also showed
antioxidant activity [154]. The patches of polymeric alginate-chitosan-curcumin [155] or
PVP-curcumin cerium nitrate [156] have been tested in vivo, showing antimicrobial activity.
These bandages are suitable for use in regenerative therapy because the wounds treated
with these dressings healed completely without scars. Moreover, other delivery platforms
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have been developed which, based on their structural design, create the possibility of the
controlled release of curcumin. These are then loaded on cellulosic fabrics used as dressings.

Naghshineh et al. [157] obtained and studied three types of composites with spongy
structure based on chitosan-collagen/gelatin/alginate-curcumin. Depending on the com-
position of the mixtures, structures with different degrees of porosity were obtained,
which had a direct effect on the ability to release curcumin. Based on the histological tests,
of the three types of structures, chitosan-gelatin-curcumin released curcumin the fastest,
resulting in the greatest healing effect on wounds and the highest antibacterial action.
The nanocomposite with alginate had the most porous structure, thus presenting the best
results on biodegradation, while the collagen composite was the most stable.

The structures of metal nanoparticles [158,159], metal oxides (Ag, Zn, or Ti) [159–162]
or graphene oxide [163], were designed as a delivery platform for curcumin. The syner-
getic action between them was aimed at increasing the regenerating effects of the skin
and antibacterial activity. These structures integrated in bacterial cellulose [158,161] or
chitosan [160,162] have been used to develop new types of advanced polymeric materials,
such as hydrogel [158,161–164] for bandages with improved wound healing properties in
chronic infections [159,165–168].

Curcumin is used in passive drug delivery systems to treat skin lesions caused by
sunburn or erythema. For this, it is integrated in thermosensitive microgels [169,170]
deposited on cotton fabrics that can be used efficiently for the treatment of lesions caused by
ultraviolet radiation [44]. Furthermore, the dyeing of natural fibers or polyester fabrics by
using alum-type mordants, metal sulfates, or biomordants can reduce the risk of developing
allergies to fixing compounds, leading to textiles that have antimicrobial activity against
Staph aureus, Klebsiella pneumonia, Candida albicans, and Salmonella typhimurium. It has been
claimed that in the future, the fabrics will be used in the medical field [22,171], especially
designed for a daily breast cancer prevention regimen for healthy women [172].

5. Future Developments of Curcumin-Based Materials

Due to the multitude of properties manifested by curcumin analogs, the diversity
of applications of the natural compound will be further developed (Figure 2) as many
as the issues related to the extraction, solubility, and stability of the parent compound
will be solved. Due to its antioxidant and anti-inflammatory properties, modern appli-
cations of curcumin in the medical field targeting the treatment of neurodegenerative
diseases [173–176] and cancer [177–184] will be further developed. Furthermore, studies
have shown that, as a result of the metabolism process, curcumin can undergo two types of
transformation. Consequently, by reducing the double bonds, hydrogenated derivatives,
di, tetra, hexa, and octahydrocurcumin can be obtained, or it can be conjugated to the
phenolic groups with sulfate moiety or glucuronol moiety [185]. Each of these compounds
manifesting greater solubility and improved bioactivity compared to curcumin. In vivo
studies by Zhang et al. [186] showed that tetrahydrocurcumin and octahydrocurcumin
demonstrated more pronounced anti-inflammatory activity than curcumin. These stud-
ies will be continued to evaluate its antioxidant, anti-cancer, and antiseptic properties,
and the mechanisms by which they act. Simultaneously, studies have been conducted
on the protective activity of curcumin based on its antioxidant properties against the
neurotoxicity produced by methamphetamine [187], organophosphorus insecticides [188],
and aluminum [189]. In vivo results have shown that the mechanisms of action of curcumin
include the prevention of lipid peroxidation and an increase in the antioxidant capacity
of the enzymes superoxide dismutase and glutathione peroxidase that protect cells from
damage caused by ROS [187].

In the case of neurological diseases, nano-curcumin treatments have been tested
in vitro/in vivo and in clinical trials. For the development of targeted therapy in the treat-
ment of neuronal diseases, curcumin was encapsulated in micelles, liposomes, or polymeric
nanoparticles. Thus, the efficacy of neuronal membrane penetration and the mechanisms
of action of “nano”-curcumin in the treatment of Parkinson’s disease [173], Huntington’s
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disease, Alzheimer’s disease [21,176], multiple sclerosis, epilepsy, and amyotrophic lateral
sclerosis were evaluated [174,175]. Furthermore, curcumin and curcumin nanoparticles
have been tested as a protector on indicators of oxidative stress in cardiovascular dis-
ease [190–192]. Prathipati et al. evaluated the neuroprotective effects of curcumin-loaded
lipid nanoparticles on homocysteine-induced oxidative stress in vascular dementia. In vivo
test results showed that 25 mg/kg nano-curcumin demonstrated neuroprotective effects
on homocysteine-induced oxidative stress [192].

Studies should be simultaneously continued on the cytotoxicity of nanoparticles,
their biodegradation, and the biocompatibility of curcumin delivery systems.

In cancer treatments, curcumin has been approached from several perspectives. It was
primarily used as a chemo-protective, reducing the side effects of cytotoxic drugs used in
chemotherapy through various mechanisms of reduction, markers of heart damage, or the
degree of lipid peroxidation [177–180]. In vivo studies have shown the hepato-protective
and nephrological effect of curcumin administered before and during chemotherapy [178].
The second approach is the use of curcumin as an adjuvant with the effect of the chemo-
sensitization of cancer cells resistant to chemotherapeutic agents, through mechanisms
of inhibition of the expression of anti-apoptotic proteins or intracellular transcription
factors [181]. Thus, the results of studies performed on patients with colorectal cancer re-
fractory to standard chemotherapy established a daily oral dose of 3.6 g curcumin without
adverse effects. Encouraging results were obtained after completion of the first stage of
clinical trials conducted in patients with breast cancer where the curcumin was used as an
adjuvant in combination with the chemotherapeutic agent docetaxel. The final recommen-
dations are that the maximum dose administered should be 6 g/day curcumin [182,183].
To reduce the dose of administration and increase the bioavailability, curcumin was con-
ditioned in the form of nanoparticles, micelles, liposomes, and phospholipid complexes.
Thus, curcumin encapsulated in biocompatible polymers or liposomes in combination with
chemotherapeutic agents have been tested for breast cancer, cervical cancer, and pancreatic
cancer. The results of in vivo tests demonstrated an efficiency of 76–82.5% in inhibiting
tumor growth compared to cells treated with individual compounds [182]. Another way in
which curcumin has found use in cancer treatments is its use as a photosensitizer in photo-
dynamic therapy to treat skin [193,194], lung [195], prostate [196], breast [197], or cervical
cancers [198]. Due to the ability of curcumin to generate reactive oxygen species, the tests
in vitro/in vivo have obtained encouraging results for such applications. In vivo/in vitro
studies of the delivery of curcumin encapsulated in liposomal structures [193,197] or
mesoporous materials [195,199,200] have shown an increase in cytotoxic activity and have
suggested the possibility of efficient use of curcumin in lower doses in PDT of cancer.

All these possible applications require further studies on the optimal conditioning
conditions to increase the bioactivity of curcumin and the biocompatibility of the delivery
systems used.

The use of curcumin in the field of sensors is already known, but research continues
in the development of new structures and detection methods depending on its field of use,
either in the medical, food [23–25], or environmental protection fields [201]. Its application
in the development of nanomaterials for antimicrobial and antibiofilm coatings for multiple
surfaces, necessary in both the food and medical fields, will continue to be given special
attention. In addition, there are new uses in the application of products with self-cleaning
properties [202] or anticorrosive coatings [203]. Developing new composite materials
with curcumin has started to be addressed in areas such as solar cellules [204], nonlinear
optics [205] applications in robotics, and artificial intelligence [206]. All this research on
increasing efficiency in the use of curcumin for various fields is conducted with the vision
of developing new eco-technologies, based on sustainable methods and principles.

The use of the natural compound has been preferred in many applications due to its
known properties and the cytotoxicity tests performed, which considerably reduces the
research time regarding the application of curcumin in certain fields, such as medical and
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food. However, curcumin-derived structures must also be tested, with some studies show-
ing modified structures that have improved properties over the natural compound [16–20].

6. Conclusions

Out of a desire to use as much of the bioactive potential of curcumin as possi-
ble, the compound has known and continues to know various applications. Starting
from the most diverse extraction methods to conditioning the compound in the form of
(nano)emulsions, (nano)particles, and delivery nanoplatforms, all aim to increase the light
stability and water solubility of curcumin. The diversity of composite materials that can be
designed, depending on the purpose of use, leave the field of curcumin conditioning open
to research. Various biomaterials active from an antibacterial and antibiofilm point of view
can be intuited in which curcumin plays the role of an additive that potentiates the activities
of other compounds or has synergistic activity with them. However, the way in which
nanomaterials can influence human health must be taken into account, given that they can
be ingested when used for food preservation, or can cross the cell barrier by penetrating the
skin from compounds intended for dermatological treatments. Depending on their location
inside the cell, nanoparticles, by specific mechanisms, can damage the cell structure or
DNA, eventually causing cell death. To this end, in vivo studies should be performed to
have a clearer view of the effects of nanocomposites in terms of their cytotoxicity. Moreover,
the use of nanocomposites in packaging products or dressings/bandages should not be
neglected in terms of the biodegradability properties or the effects that may result after use
when released into the environment.
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