Deposition of Nb-Si-C Thin Films by Radio Frequency Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsoum, M.W. The Mn+1AXn Phases: A new class of solids. Progr. Solid S.T. Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Film. 2010, 518, 1851–1878. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166. [Google Scholar] [CrossRef]
- Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2013; pp. 1–2. [Google Scholar]
- Ward, J.; Middleburgh, S.; Topping, M.; Garner, A.; Stewart, D.; Barsoum, M.W.; Preuss, M.; Frankel, P. Crystallographic evolution of max phases in proton irradiating environments. J. Nucl. Mater. 2018, 502, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, Y. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 2009, 39, 415–443. [Google Scholar] [CrossRef]
- Palmquist, J.-P.; Li, S.; Persson, P.O.Å.; Emmerlich, J.; Wilhelmsson, O.; Högberg, H.; Katsnelson, M.I.; Johansson, B.; Ahuja, R.; Eriksson, O.; et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and Ab initio calculations. Phys. Rev. B 2004, 70, 165401. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Frodelius, J.; Högberg, H.; Hultman, L. Magnetron sputtering of Ti3SiC2 thin films from a compound target. J. Vac. Sci. Technol. A 2007, 25, 1381–1388. [Google Scholar] [CrossRef]
- Furgeaud, C.; Brenet, F.; Nicolai, J. Multi-scale study of Ti3SiC2 thin film growth mechanisms obtained by magnetron sputtering. Materialia 2019, 7, 100369. [Google Scholar] [CrossRef]
- Palmquist, J.-P.; Jansson, U.; Seppänen, T.; Persson, P.O.Å.; Birch, J.; Hultman, L.; Isberg, P. Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl. Phys. Lett. 2002, 81, 835–837. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, H.; Chai, J.; Pan, J.; Seng, H.L.; Goh, G.T.W.; Wong, L.M.; Sullivan, M.B.; Wang, S.J. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 2016, 368, 88–96. [Google Scholar] [CrossRef]
- Joelsson, T.; Flink, A.; Birch, J.; Hultman, L. Deposition of single-crystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al Compound Target. J. Appl. Phys. 2007, 102, 074918. [Google Scholar] [CrossRef]
- Höglund, C.; Beckes, M.; Schell, N.; von Borany, J.; Birch, J.; Hultman, L. Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti. Appl. Phys. Lett. 2007, 90, 174106. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Chen, Z.; Wang, G.; Wang, L.; Zhang, G.J. Microstructure evolution of polycrystalline Ti2AlN MAX phase film during post-deposition annealing. J. Eur. Ceram. Soc. 2018, 38, 4892–4898. [Google Scholar] [CrossRef]
- Wilhelmsson, O.; Palmquist, J.-P.; Lewin, E.; Emmerlich, J.; Eklund, P.; Persson, P.O.Å.; Högberg, H.; Li, S.; Ahuja, R.; Eriksson, O.; et al. Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering. J. Cryst. Growth 2006, 291, 290–300. [Google Scholar] [CrossRef]
- Su, R.; Zhang, H.; O’Connor, D.J.; Shi, L.; Meng, X.; Zhang, H. Deposition and characterization of Ti2AlC MAX Phase and Ti3AlC thin films by magnetron sputtering. Mater. Lett. 2016, 179, 194–197. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Wang, C.; Wu, H.C.; Ke, P.L.; Wang, A.Y. Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 °C. Mater. Lett. 2020, 261, 127160. [Google Scholar] [CrossRef]
- Högberg, H.; Eklund, P.; Emmerlich, J.; Birch, J.; Hultman, L. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J. Mater. Res. 2005, 20, 779–782. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.D. Incipient low-temperature formation of MAX phase in Cr-Al-C films. J. Adv. Ceram. 2018, 7, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Grieseler, R.; Hähnlein, B.; Stubenrauch, M.; Kups, T.; Wilke, M.; Hopfeld, M.; Pezoldt, J.; Schaaf, P. Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films. Appl. Surf. Sci. 2014, 292, 997–1001. [Google Scholar] [CrossRef]
- Li, C.; Wang, B.; Li, Y.; Wang, R. First-principles study of electronic structure, mechanical and optical properties of V4AlC3. J. Phys. D: Appl. Phys. 2009, 42, 065407. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Y.; Zhao, G.; Xu, J.; Li, M. Preparation of Nb2AlC Coating by DC magnetron sputtering and subsequent annealing. Ceram. Int. 2017, 43, 6622–6625. [Google Scholar] [CrossRef]
- Tengstrand, O.; Nedfors, N.; Andersson, M.; Lu, J.; Jansson, U.; Flink, A.; Eklund, P.; Hultman, L. Beam-induced crystallization of amorphous Me-Si-C (Me = Nb or Zr) thin films during transmission electron microscopy. Mrs Commun. 2013, 3, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Tengstrand, O.; Nedfors, N.; Andersson, M.; Lu, J.; Jansson, U.; Flink, A.; Eklund, P.; Hultman, L. Model for electron-beam-induced crystallization of amorphous Me-Si-C (Me =Nb or Zr) thin films. J. Mater. Res. 2014, 14, 2854–2862. [Google Scholar] [CrossRef] [Green Version]
- Nedfors, N.; Tengstrand, O.; Flink, A.; Eklund, P.; Hultman, L.; Jansson, U. Characterization of amorphous and nanocomposite Nb-Si-C thin films deposited by DC magnetron sputtering. Thin Solid Film. 2013, 545, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Ying, G.B.; Ma, F.C.; Su, L.; He, X.D.; Zhang, C.; Dai, Z.H.; Luo, H.; Du, S.Y.; Wang, C. An ab initio prediction study of the electronic structure and elastic properties of V3GeC2. Process. Appl. Ceram. 2017, 11, 82–86. [Google Scholar] [CrossRef]
- Faraoun, H.I.; Abderrahim, F.Z.; Esling, C. First principle calculations of MAX ceramics Cr2GeC, V2GeC and their substitutional solid solutions. Comput. Mater. Sci. 2013, 74, 40–49. [Google Scholar] [CrossRef]
- Yi, J.X.; Chen, P.; Li, D.L.; Xiao, X.B.; Zhang, W.B.; Tang, B.Y. Elastic and electronic properties of a new MAX compound from first-principles calculations. Solid State Commun. 2010, 150, 49–53. [Google Scholar] [CrossRef]
- Ghebouli, B.; Ghebouli, M.A.; Fatmi, M.; HI, T.C.; Bouhemadou, A. First-principles calculations of structural, electronic, elastic and thermal properties of phase M2SiC (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Trans. Nonferrous Met. Soc. China 2015, 25, 915–925. [Google Scholar] [CrossRef]
- Li, C.L.; Kuo, J.L.; Wang, B.; Li, Y.S.; Wang, R. A new layer compound Nb4SiC3 predicted from first-principles theory. J. Phys. D Appl. Phys. 2009, 42, 075404. [Google Scholar] [CrossRef]
- Fu, Y.D.; Wang, B.C.; Teng, Y.; Zhu, X.S.; Feng, X.X.; Yan, M.F.; Korzhavyi, P.; Sun, W.W. The Role of group III, IV elements in Nb4AC3 MAX phases (A = Al, Si, Ga, Ge) and the unusual anisotropic behavior of the electronic and optical properties. Phys. Chem. Chem. Phys. 2017, 19, 15471. [Google Scholar] [CrossRef]
- Onoprienko, A.A.; Ivashchenko, V.I.; Timofeeva, I.I.; Sinelnitchenko, A.K.; Butenko, O.A. Experimental and theoretical investigation of Nb-Si-C films. Surf. Coat. Technol. 2016, 300, 35–41. [Google Scholar] [CrossRef]
- El-Raghy, T.; Chakraborty, S.; Barsoum, M.W. Synthesis and characterization of Hf2PbC, Zr2PbC andM2SnC (M = Ti, Hf, Nb or Zr). J. Eur Ceram. Soc. 2000, 20, 2619–2625. [Google Scholar] [CrossRef]
Si/C/Nb Area Ratio | Ar Gas Flow Rate (sccm) | Sputtering Pressure (Pa) | Vacuum Degree (Pa) | Base Bias (v) |
---|---|---|---|---|
1:3:5 | 25 | 2.4 | 3 × 10−5 | −100 |
Process Parameters | a | b | c | d | e |
---|---|---|---|---|---|
Sputtering time (min) | 60 | 60 | 60 | 60 | 60 |
Sputtering Power (W) | 65 | 70 | 75 | 80 | 100 |
Sputtering Power (W) | C (at.%) | Si (at.%) | Nb (at.%) |
---|---|---|---|
65 (a) | 30 ± 1.6 | 25 ± 1.7 | 45 ± 0.5 |
70 (b) | 36 ± 1.8 | 23 ± 1.3 | 41 ± 0.6 |
75 (c) | 42 ± 1.6 | 21 ± 1.6 | 37 ± 0.7 |
80 (d) | 40 ± 1.8 | 18 ± 1.5 | 42 ± 0.5 |
100 (e) | 44 ± 2.1 | 15 ± 1.7 | 41 ± 0.4 |
Sputtering Power (W) | Hardness (GPa) | Elastic Modulus (GPa) | Resistivity (μΩ·m) |
---|---|---|---|
65 (a) | 15 ± 1 | 200 ± 16 | 0.99 |
70 (b) | 18 ± 1 | 215 ± 10 | 1.95 |
75 (c) | 19 ± 1 | 200 ± 17 | 2.06 |
80 (d) | 20 ± 1 | 220 ± 15 | 1.89 |
100 (e) | 20 ± 2 | 215 ± 13 | 2.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, G.; Liu, G.; Zhu, X.; Fu, Y. Deposition of Nb-Si-C Thin Films by Radio Frequency Magnetron Sputtering. Coatings 2021, 11, 524. https://doi.org/10.3390/coatings11050524
Li Z, Liu G, Liu G, Zhu X, Fu Y. Deposition of Nb-Si-C Thin Films by Radio Frequency Magnetron Sputtering. Coatings. 2021; 11(5):524. https://doi.org/10.3390/coatings11050524
Chicago/Turabian StyleLi, Zifeng, Guotan Liu, Guanqi Liu, Xiaoshuo Zhu, and Yudong Fu. 2021. "Deposition of Nb-Si-C Thin Films by Radio Frequency Magnetron Sputtering" Coatings 11, no. 5: 524. https://doi.org/10.3390/coatings11050524
APA StyleLi, Z., Liu, G., Liu, G., Zhu, X., & Fu, Y. (2021). Deposition of Nb-Si-C Thin Films by Radio Frequency Magnetron Sputtering. Coatings, 11(5), 524. https://doi.org/10.3390/coatings11050524