Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Samples Preparation
2.2. Indoor Setup and Experimental Procedure
2.3. Outdoor Setup and Experimental Procedure
3. Results and Discussion
3.1. Kuala Lumpur Weather Profile
3.2. Indoor Analysis
3.3. Outdoor Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Irradiation Value | Zinc Concentration | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Mean | Standard Deviation (%) |
---|---|---|---|---|---|---|---|---|
200 W/m2 | 0.5% | 53.41 | 53.373 | 53.395 | 53.436 | 53.386 | 53.4 | 2.166102 |
1% | 53.28 | 53.243 | 53.255 | 53.286 | 53.236 | 53.26 | 1.982927 | |
3% | 54.817 | 54.783 | 54.798 | 54.826 | 54.776 | 54.8 | 1.915202 | |
5% | 54.57 | 54.533 | 54.535 | 54.596 | 54.516 | 54.55 | 2.893441 | |
7% | 54.806 | 54.807 | 54.805 | 54.846 | 54.786 | 54.81 | 1.960612 | |
10% | 55.962 | 55.923 | 55.935 | 55.964 | 55.916 | 55.94 | 1.974842 | |
15% | 55 | 54.973 | 54.965 | 55.046 | 54.966 | 54.99 | 3.074411 | |
20% | 54.834 | 54.819 | 54.825 | 54.866 | 54.806 | 54.83 | 2.016928 | |
0% | 45.953 | 45.94 | 45.945 | 45.986 | 45.926 | 45.95 | 2.002998 | |
- | 34.35 | 34.273 | 34.285 | 34.296 | 34.246 | 34.29 | 3.431035 | |
600 W/m2 | 0.5% | 73.682 | 73.661 | 73.675 | 73.716 | 73.666 | 73.68 | 1.940103 |
1% | 74.303 | 74.273 | 74.282 | 74.326 | 74.266 | 74.29 | 2.18815 | |
3% | 76.61 | 76.533 | 76.555 | 76.606 | 76.546 | 76.57 | 3.18308 | |
5% | 77.13 | 77.103 | 77.105 | 77.126 | 77.086 | 77.11 | 1.616168 | |
7% | 77.88 | 77.813 | 77.815 | 77.876 | 77.816 | 77.84 | 3.106767 | |
10% | 82.282 | 82.271 | 82.285 | 82.326 | 82.286 | 82.29 | 1.877232 | |
15% | 78.74 | 78.703 | 78.715 | 78.746 | 78.696 | 78.72 | 1.982927 | |
20% | 78.52 | 78.493 | 78.505 | 78.546 | 78.486 | 78.51 | 2.138224 | |
0% | 63.848 | 63.801 | 63.815 | 63.856 | 63.78 | 63.82 | 2.851666 | |
- | 41.94 | 41.913 | 41.925 | 41.966 | 41.906 | 41.93 | 2.138224 | |
800 W/m2 | 0.5% | 78.965 | 78.943 | 78.95 | 78.996 | 78.946 | 78.96 | 1.952434 |
1% | 81.915 | 81.883 | 81.89 | 81.936 | 81.876 | 81.9 | 2.229798 | |
3% | 87.908 | 87.893 | 87.905 | 87.946 | 87.898 | 87.91 | 1.8751 | |
5% | 89.71 | 89.663 | 89.675 | 89.696 | 89.656 | 89.68 | 2.022869 | |
7% | 90.861 | 90.833 | 90.842 | 90.886 | 90.828 | 90.85 | 2.123205 | |
10% | 94.96 | 94.923 | 94.925 | 94.976 | 94.916 | 94.94 | 2.360508 | |
15% | 93.755 | 93.703 | 93.695 | 93.762 | 93.685 | 93.72 | 3.202499 | |
20% | 91.626 | 91.647 | 91.645 | 91.706 | 91.626 | 91.65 | 2.940068 | |
0% | 72.866 | 72.843 | 72.855 | 72.89 | 72.846 | 72.86 | 1.700588 | |
- | 44.965 | 44.933 | 44.94 | 44.986 | 44.926 | 44.95 | - | |
1000 W/m2 | 0.5% | 88.1 | 88.033 | 88.045 | 88.096 | 88.026 | 88.06 | 3.164174 |
1% | 90.15 | 90.123 | 90.135 | 90.176 | 90.116 | 90.14 | 2.138224 | |
3% | 96.04 | 95.993 | 95.985 | 96.056 | 95.976 | 96.01 | 3.189357 | |
5% | 97.02 | 97.003 | 97.015 | 97.056 | 97.006 | 97.02 | 1.900526 | |
7% | 98.34 | 98.303 | 98.305 | 98.356 | 98.296 | 98.32 | 2.360508 | |
10% | 103.566 | 103.553 | 103.552 | 103.596 | 103.533 | 103.56 | 2.085186 | |
15% | 97.127 | 97.053 | 97.078 | 97.126 | 97.066 | 97.09 | 3.083504 | |
20% | 97.66 | 97.633 | 97.645 | 97.686 | 97.626 | 97.65 | 2.138224 | |
0% | 83.807 | 83.783 | 83.795 | 83.836 | 83.779 | 83.8 | 2.04939 | |
- | 65.058 | 65.033 | 65.033 | 65.06 | 65.016 | 65.04 | 1.672124 |
References
- Biswas, A.K.; Tortajada, C. Water crisis and water wars: Myths and realities. Int. J. Water Resour. Dev. 2019, 35, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Khairkar, S.R.; Pansare, A.V.; Shedge, A.A.; Chhatre, S.Y.; Suresh, A.; Chakrabarti, S.; Patil, V.R.; Nagarkar, A.A. Hydrophobic interpenetrating polyamide-PDMS membranes for desalination, pesticides removal and enhanced chlorine tolerance. Chemosphere 2020, 258, 127179. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Pei, Y.; Crittenden, J.C. Unique applications and improvements of reverse electrodialysis: A review and outlook. Appl. Energy 2020, 262, 114482. [Google Scholar] [CrossRef]
- Baltes, L.; Patachia, S.; Ekincioglu, O.; Ozkul, H.; Croitoru, C.; Munteanu, C.; Istrate, B.; Tierean, M. Polymer-Cement Composites Glazing by Concentrated Solar Energy. Coatings 2021, 11, 350. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Han, M.; Wang, G.; Hayat, T.; Chen, G. Energy-water nexus in seawater desalination project: A typical water production system in China. J. Clean. Prod. 2020, 279, 123412. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Yang, M.; Yuan, G. Dynamic Simulation of a Novel Solar Polygeneration System for Heat, Power and Fresh Water Production based on Solar Thermal Power Tower Plant. J. Therm. Sci. 2020, 29, 378–392. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Bradley, R.; Zhao, B.; Wu, W. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Adv. 2019, 9, 29414–29423. [Google Scholar] [CrossRef] [Green Version]
- Abujazar, M.S.S.; Fatihah, S.; Kabeel, A. Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate. Desalination 2017, 423, 141–148. [Google Scholar] [CrossRef]
- Kabeel, A.; Sathyamurthy, R.; Sharshir, S.W.; Muthumanokar, A.; Panchal, H.; Prakash, N.; Prasad, C.; Nandakumar, S.; El Kady, M. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. J. Clean. Prod. 2019, 213, 185–191. [Google Scholar] [CrossRef]
- Saleh, S.M.; Soliman, A.M.; Sharaf, M.A.; Kale, V.; Gadgil, B. Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J. Environ. Chem. Eng. 2017, 5, 1219–1226. [Google Scholar] [CrossRef]
- El Jirie, N.B.; Capareda, S.C.; Liu, S.; Akbulut, M. Advanced Solar Still Development: Improving Distilled Water Recovery and Purity via Graphene-Enhanced Surface Modifiers. Front. Environ. Sci. 2020, 8, 531049. [Google Scholar]
- Imae, I. Reduction of Graphene Oxide Using an Environmentally Friendly Method and Its Application to Energy-Related Materials. Coatings 2021, 11, 297. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Sharshir, S.W.; Kabeel, A.E.; Elkadeem, M.; Ma, Z.; Manokar, A.M.; Arıcı, M.; Pandey, A.; Saidur, R. Performance analysis of a modified solar still using reduced graphene oxide coated absorber plate with activated carbon pellet. Sustain. Energy Technol. Assess. 2021, 45, 101046. [Google Scholar]
- Balachandran, G.B.; David, P.W.; Mariappan, R.K.; Athikesavan, M.M.; Sathyamurthy, R. Improvising the efficiency of single-sloped solar still using thermally conductive nano-ferric oxide. Environ. Sci. Pollut. Res. 2019, 27, 32191–32204. [Google Scholar] [CrossRef] [PubMed]
- Kabeel, A.; Omara, Z.; Essa, F.; Abdullah, A.; Arunkumar, T.; Sathyamurthy, R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex. Eng. J. 2017, 56, 433–438. [Google Scholar] [CrossRef]
- Sathyamurthy, R.; Balasubramanian, M.; Devarajan, M.; Sharshir, S.W.; Manokar, A.M. Experimental study on enhancing the yield from stepped solar still coated using fumed silica nanoparticle in black paint. Mater. Lett. 2020, 272, 127873. [Google Scholar] [CrossRef]
- Tenthani, C.; Madhlopa, A.; Kimambo, C. Improved solar still for water purification. J. Sustain. Energy Environ. 2012, 3, 111–113. [Google Scholar]
- Sivakumar, S.; Velmurugan, C.; Dhas, D.E.J.; Solomon, A.B.; Wins, K.L.D. Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer. Renew. Energy 2020, 155, 1165–1172. [Google Scholar] [CrossRef]
- Modi, K.V.; Jani, H.K.; Gamit, I.D. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. J. Therm. Anal. Calorim. 2020, 143, 899–913. [Google Scholar] [CrossRef]
- Arunkumar, T.; Murugesan, D.; Raj, K.; Denkenberger, D.; Viswanathan, C.; Rufuss, D.D.W.; Velraj, R. Effect of nano-coated CuO absorbers with PVA sponges in solar water desalting system. Appl. Therm. Eng. 2019, 148, 1416–1424. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Guclu, T.; Besir, A.B. On the use of nanofluids in solar energy applications. J. Therm. Sci. 2020, 29, 513–534. [Google Scholar] [CrossRef]
- Kabeel, A.; Omara, Z.; Essa, F. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers. Manag. 2014, 86, 268–274. [Google Scholar] [CrossRef]
- Fayaz, H.; Rahim, N.; Hasanuzzaman, M.; Nasrin, R.; Rivai, A. Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renew. Energy 2019, 143, 827–841. [Google Scholar] [CrossRef]
- Meteoblue. Weather Archive Kuala Lumpur. Available online: https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/kuala-lumpur_malaysia_1735161?fcstlength=1y&year=2020&month=12 (accessed on 22 December 2020).
- Tang, K.H.D. Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Sci. Total Environ. 2019, 650, 1858–1871. [Google Scholar] [CrossRef]
Instrument | Measuring Range | Accuracy |
---|---|---|
Pyranometer (model: LI-COR, LI200R) | 0 to 2000 W/m2 | ±2% |
Data Logger (model: Data Taker DT80) | −45 °C to 70 °C (operational range) | ±2% |
Thermocouple (K-type) | −200 to 1260 °C | ±5% |
Sr. No | Matrix | Zn Concentration (wt. %) | Maximum Temperature (°C) at 200 W/m2 |
---|---|---|---|
1 | Black paint | 0.5% | 53.40 ± 2% |
2 | Black paint | 1% | 53.26 ± 2% |
3 | Black paint | 3% | 54.80 ± 2% |
4 | Black paint | 5% | 54.55 ± 3% |
5 | Black paint | 7% | 54.81 ± 2% |
6 | Black paint | 10% | 55.94 ± 2% |
7 | Black paint | 15% | 54.99 ± 3% |
8 | Black paint | 20% | 54.83 ± 3% |
9 | Black paint | 0% | 45.95 ± 2% |
10 | Aluminum | - | 34.29 ± 3% |
Maximum Temperature (°C) at 600 W/m2 | |||
11 | Black paint | 0.5% | 73.68 ± 2% |
12 | Black paint | 1% | 74.29 ± 2% |
13 | Black paint | 3% | 76.57 ± 3% |
14 | Black paint | 5% | 77.11 ± 2% |
15 | Black paint | 7% | 77.84 ± 3% |
16 | Black paint | 10% | 82.29 ± 2% |
17 | Black paint | 15% | 78.72 ± 2% |
18 | Black paint | 20% | 78.51 ± 2% |
19 | Black paint | 0% | 63.82 ± 3% |
20 | Aluminum | - | 41.93 ± 2% |
Maximum Temperature (°C) at 800 W/m2 | |||
21 | Black paint | 0.5% | 78.96 ± 2% |
22 | Black paint | 1% | 81.90 ± 3% |
23 | Black paint | 3% | 87.91 ± 2% |
24 | Black paint | 5% | 89.68 ± 2% |
25 | Black paint | 7% | 90.85 ± 2% |
26 | Black paint | 10% | 94.94 ± 2% |
27 | Black paint | 15% | 93.72 ± 3% |
28 | Black paint | 20% | 91.65 ± 3% |
29 | Black paint | 0% | 72.86 ± 2% |
30 | Aluminum | - | 44.95 ± 2% |
Maximum Temperature(°C) at 1000 W/m2 | |||
31 | Black paint | 0.5% | 88.06 ± 3% |
32 | Black paint | 1% | 90.14 ± 2% |
33 | Black paint | 3% | 96.01 ± 3% |
34 | Black paint | 5% | 97.02 ± 2% |
35 | Black paint | 7% | 98.32 ± 2% |
36 | Black paint | 10% | 103.56 ± 2% |
37 | Black paint | 15% | 97.09 ± 3% |
38 | Black paint | 20% | 97.65 ± 2% |
39 | Black paint | 0% | 83.80 ± 2% |
40 | Aluminum | - | 65.04 ± 2% |
Sr. No | Matrix | Zn Concentration (wt. %) | Average Temperature (°C) | Maximum Temperature (°C) |
---|---|---|---|---|
1 | Black paint | 0.5% | 51.7 | 81.8 |
2 | Black paint | 1% | 51.8 | 83.2 |
3 | Black paint | 3% | 52.2 | 82.6 |
4 | Black paint | 5% | 53.0 | 82.7 |
5 | Black paint | 7% | 52.5 | 84.2 |
6 | Black paint | 10% | 55.9 | 87.5 |
7 | Black paint | 15% | 54.9 | 86.4 |
8 | Black paint | 20% | 55.4 | 84.5 |
9 | Black paint | 0% | 51.2 | 80.0 |
10 | Aluminum reference | - | 37.1 | 60.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.S.; Han, S.S.; Zafar, A.; Ghafoor, U.; Rahim, N.A.; Ali, M.U.; Rim, Y.S. Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application. Coatings 2021, 11, 536. https://doi.org/10.3390/coatings11050536
Ahmad MS, Han SS, Zafar A, Ghafoor U, Rahim NA, Ali MU, Rim YS. Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application. Coatings. 2021; 11(5):536. https://doi.org/10.3390/coatings11050536
Chicago/Turabian StyleAhmad, Muhammad Shakeel, Shwe Sin Han, Amad Zafar, Usman Ghafoor, Nasrudin Abd Rahim, Muhammad Umair Ali, and You Seung Rim. 2021. "Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application" Coatings 11, no. 5: 536. https://doi.org/10.3390/coatings11050536
APA StyleAhmad, M. S., Han, S. S., Zafar, A., Ghafoor, U., Rahim, N. A., Ali, M. U., & Rim, Y. S. (2021). Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application. Coatings, 11(5), 536. https://doi.org/10.3390/coatings11050536