Electrospun Sericin/PNIPAM-Based Nano-Modified Cotton Fabric with Multi-Function Responsiveness
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Preparation of the Sericin/PNIPAM/PEO Composite Spinning Solution
2.3. Fabrication of Electrospun Sericin/PNIPAM/PEO Nanofibers and Functionalization of Cotton Fabric
2.4. Characterization
2.4.1. Scanning Electron Microscopy
2.4.2. Fourier Transform Infrared Spectroscopy
2.4.3. Differential Scanning Calorimetry
2.4.4. Contact Angle Measurements
2.4.5. pH-Responsive Swelling
2.4.6. Antimicrobial Activity Measurements
3. Results and Discussion
3.1. SEM
3.2. FT-IR
3.3. Thermosensitive Behavior
3.4. pH-Responsive Swelling Behaviors
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, J.; Xu, B.; Tao, X. Three-Dimensionally Conformal Porous Microstructured Fabrics via Breath Fig-ures: A Nature-Inspired Approach for Novel Surface Modification of Textiles. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Trovato, V.; Teblum, E.; Kostikov, Y.; Pedrana, A.; Re, V.; Nessim, G.D.; Rosace, G. Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution-ScienceDirect. J. Colloid Interface Sci. 2020, 586, 120–134. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, M.; Qiang, Z.; Song, J.; Wang, Y.; Fan, Y.; You, Z.; Liao, Y.; Zhu, M.; Ye, C. Multi-functional and Highly Conductive Textiles with Ultra-high Durability through ’Green’ Fabrication Process. Chem. Eng. J. 2020, 406, 127140. [Google Scholar] [CrossRef]
- Ivanoska-Dacikj, A.; Stachewicz, U. Smart textiles and wearable technologies—Opportunities offered in the fight against pandemics in relation to current COVID-19 state. Rev. Adv. Mater. Sci. 2020, 59, 487–505. [Google Scholar] [CrossRef]
- Martínez-Pérez, C.A. Electrospinning: A promising technique for drug delivery systems. Rev. Adv. Mater. Sci. 2020, 59, 441–454. [Google Scholar] [CrossRef]
- Huang, Z.S.; Shiu, J.W.; Way, T.F.; Rwei, S.P. A Thermo-Responsive Random Copolymer of Poly(NIPAm-co-FMA) for Smart Textile Applications. Polymers 2019, 184, 121917. [Google Scholar] [CrossRef]
- Kreuzer, L.P.; Widmann, T.; Hohn, N.; Wang, K.; Bießmann, L.; Peis, L.; Moulin, J.F.; Hildebrand, V.; Laschewsky, A.; Papadakis, C.M. Swelling and Exchange Behavior of Poly(sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules 2019, 52, 3486–3498. [Google Scholar] [CrossRef]
- Tao, X. Handbook of Smart Textiles; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sun, B.; Long, Y.Z.; Zhang, H.D.; Li, M.M.; Duvail, J.L.; Jiang, X.Y.; Yin, H.L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890. [Google Scholar] [CrossRef]
- Cui, J.; Lu, T.; Li, F.; Wang, Y.; Lei, J.; Ma, W.; Zou, Y.; Huang, C. Flexible and Transparent Composite Nanofibre Membrane that was Fabricated via a "Green" Electrospinning Method for Efficient Particulate Matter 2.5 Capture. J. Colloid Interface Sci. 2020, 582, 506–614. [Google Scholar] [CrossRef]
- Barani, M.; Bazgir, S.; Hosseini, M.K.; Hosseini, P.K. Eco-facile application of electrospun nanofibers to the oil-water emulsion separation via coalescing filtration in pilot- scale and beyond. Process Saf. Environ. Prot. 2020, 148, 342–357. [Google Scholar] [CrossRef]
- Morais, M.; Coimbra, P.; Pina, M. Comparative Analysis of Morphological and Release Profiles in Ocular Implants of Acetazolamide Prepared by Electrospinning. Pharmaceutics 2021, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021, 33, 1–37. [Google Scholar]
- Zhu, J.; Jiang, S.; Hou, H.; Agarwal, S.; Greiner, A. Low Density, Thermally Stable, and Intrinsic Flame Retardant Poly(bis(benzimidazo)Benzophenanthroline-dione) Sponge. Macromol. Mater. Eng. 2018, 303. [Google Scholar] [CrossRef]
- Park, S.M.; Lee, S.J.; Lim, J.; Kim, B.C.; Han, S.J.; Kim, D.S. Versatile fabrication of size and shape-controllable nanofibrous concave mi-crowells for cell spheroid formation. ACS Appl. Mater. Interfaces 2018, 10, 37878–37885. [Google Scholar] [CrossRef]
- Yang, W.; Gong, W.; Hou, C.; Su, Y.; Guo, Y.; Zhang, W.; Li, Y.; Zhang, Q.; Wang, H. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; He, J.; Wang, H.; Qi, K.; Nan, N.; You, X.; Shao, W.; Wang, L.; Ding, B.; Cui, S. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pawłowska, S.; Rinoldi, C.; Nakielski, P.; Ziai, Y.; Urbanek, O.; Li, X.; Kowalewski, T.A.; Ding, B.; Pierini, F. Ultraviolet Light-Assisted Electrospinning of Core–Shell Fully Cross-Linked P(NIPAAm-co-NIPMAAm) Hydrogel-Based Nanofibers for Thermally Induced Drug Delivery Self-Regulation. Adv. Mater. Interfaces 2020, 7, 2000247. [Google Scholar] [CrossRef]
- Jin, S.; Liu, M.; Zhang, F.; Chen, S.; Niu, A. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer 2006, 47, 1526–1532. [Google Scholar] [CrossRef]
- Sengor, M.; Ozgun, A.; Gunduz, O.; Altintas, S. Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Mater. Lett. 2019, 263, 127233. [Google Scholar] [CrossRef]
- Nakielski, P.; Pawłowska, S.; Rinoldi, C.; Ziai, Y.; De Sio, L.; Urbanek, O.; Zembrzycki, K.; Pruchniewski, M.; Lanzi, M.; Salatelli, E.; et al. Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 54328–54342. [Google Scholar] [CrossRef]
- Guo, J.W.; Wang, C.F.; Lai, J.Y.; Lu, C.H.; Chen, J.K. Poly(N-isopropylacrylamide)-gelatin hydrogel membranes with thermo-tunable pores for water flux gating and protein separation. J. Membr. Sci. 2020, 618, 118732. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, X.; Zha, L. Fabrication of ultrafast temperature-responsive nanofibrous hydrogel with superelasticity and its ’on–off’ switchable drug releasing capacity. J. Appl. Polym. Sci. 2021, 138. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Lin, J.; Cheng, D.; Lu, Y. Multifunctional Surface Modification of Mulberry Silk Fabric via PNIPAAm/Chitosan/PEO Nanofibers Coating and Cross-Linking Technology. Coatings 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Malay, A.D.; Sato, R.; Yazawa, K.; Watanabe, H.; Ifuku, N.; Masunaga, H.; Hikima, T.; Guan, J.; Mandal, B.B.; Damrongsakkul, S.; et al. Relationships between physical properties and sequence in silkworm silks. Sci. Rep. 2016, 6, 27573. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, D.; Lu, S.; Huang, F.; Li, G. Preparation of quaternary ammonium salt of chitosan nanoparticles and their textile properties on Antheraea pernyi silk modification. Text. Res. J. 2014, 84, 2115–2124. [Google Scholar] [CrossRef]
- Varone, A.; Knight, D.; Lesage, S.; Vollrath, F.; Rajnicek, A.M.; Huang, W. The potential of Antheraea pernyi silk for spinal cord repair. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, S.; Wang, Y.; Si, B.; Cheng, D.; Liu, L.; Lu, Y. Regenerated Antheraea pernyi Silk Fibro-in/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers 2019, 11, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, B.X.; Cui, Y.F.; Yu, Z.C.; Hao, X.; Huang, F.Y.; Cheng, D.H.; Lu, Y.H. Fabrication and Super-Antibacterial Property of Nanosil-ver/Sericin/Poly(ethylene oxide) Nanofibers through Electrospinning-Combined Postdeposition Method. J. Nanomater. 2016, 2016, 45. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.V.; Gomes, P.S.; Fernandes, M.H.; Costa, M.E.; Almeida, M.M. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Mater. Sci. Eng. 2020, 109, 110557. [Google Scholar] [CrossRef]
- Valizadeh, S.; Naseri, M.; Babaei, S.; Hosseini, S.M.; Imani, A. Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. Int. J. Biol. Macromol. 2019, 134, 604–612. [Google Scholar] [CrossRef]
- Ai, L.; He, H.; Wang, P.; Cai, R.; Tao, G.; Yang, M.; Liu, L.; Zuo, H.; Zhao, P.; Wang, Y. Rational Design and Fabrication of ZnONPs Functionalized Sericin/PVA Antimicrobial Sponge. Int. J. Mol. Sci. 2019, 20, 4796. [Google Scholar] [CrossRef] [Green Version]
- Jahanshahi, M.; Kowsari, E.; Haddadi-Asl, V.; Khoobi, M.; Lee, J.H.; Kadumudi, F.B.; Talebian, S.; Kamaly, N.; Mehrali, M. Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. Int. J. Pharm. 2019, 572, 118791. [Google Scholar] [CrossRef]
- Wu, W.; Li, W.; Wang, L.Q.; Tu, K.; Sun, W. Synthesis and characterization of pH- and temperature-sensitive silk sericin/poly(N-isopropylacrylamide) interpenetrating polymer networks. Polym. Int. 2006, 55, 513–519. [Google Scholar] [CrossRef]
- Deng, X.; Nikiforov, A.Y.; Coenye, T.; Cools, P.; Aziz, G.; Morent, R.; De Geyter, N.; Leys, C. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci. Rep. 2015, 5, 10138. [Google Scholar] [CrossRef] [PubMed]
- Purwar, R.; Verma, A.; Batra, R. Antimicrobial gelatin/sericin/clay films for packaging of hygiene products. J. Polym. Eng. 2019, 39, 744–751. [Google Scholar] [CrossRef]
- Wang, B.; Wu, X.; Li, J.; Hao, X.; Lin, J.; Cheng, D.; Lu, Y. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide) Interpenetrating Polymer Network Hydrogel. Polymers 2016, 8, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Xing, Z.; Yan, J.; Lu, Y.; Xiong, X.; Zheng, L. Thermosensitive Behavior and Super-Antibacterial Properties of Cotton Fabrics Modified with a Sercin-NIPAAm-AgNPs Interpenetrating Polymer Network Hydrogel. Polymers 2018, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Minier, S.; Kim, H.J.; Zaugg, J.; Mallapragada, S.K.; Vaknin, D.; Wang, W. Poly(N-isopropylacrylamide)-grafted gold nanoparticles at the vapor/water interface. J. Colloid Interface Sci. 2021, 585, 312–319. [Google Scholar] [CrossRef]
- Xue, R.; Liu, Y.; Zhang, Q.; Liang, C.; Qin, H.; Liu, P.; Wang, K.; Zhang, X.; Chen, L.; Wei, Y. Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing. Appl. Environ. Microbiol. 2016, 82, 4663–4672. [Google Scholar] [CrossRef] [Green Version]
Code | Sericin: NIPAM: PEO (Volume Ratio) | Sericin (mL) | NIPAM (mL) | PEO (mL) | APS (mg) | 5%TEMED (uL) |
---|---|---|---|---|---|---|
1 | 25/45/30 | 5 | 9 | 6 | 1.36 | 27.2 |
2 | 40/30/30 | 4 | 3 | 3 | 0.45 | 9.1 |
3 | 55/15/30 | 11 | 3 | 6 | 0.45 | 9.1 |
Code | Sericin: NIPAM: PEO (Volume Ratio) | Conductivity (mS/cm) | Surface Tension (mN/m) |
---|---|---|---|
1 | 25/45/30 | 0.64 ± 0.15 | 43.5 ± 0.15 |
2 | 40/30/30 | 0.84 ± 0.15 | 47.7 ± 0.17 |
3 | 55/15/30 | 0.96 ± 0.12 | 46.4 ± 0.20 |
Sample | E. coli | S. aureus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surviving Cells (CFU/mL) | Surviving Cells (CFU/mL) | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Untreated cotton fabric | 251,000 | 232,000 | 243,000 | 235,000 | 250,000 | 241,000 | 234,000 | 228,000 | 221,000 | 230,000 |
Functionalized cotton fabric | 27,000 | 36,000 | 26,000 | 18,000 | 19,000 | 5000 | 7000 | 9000 | 14,000 | 12,000 |
Reduction(%) | 89.24 | 84.48 | 89.30 | 92.34 | 92.40 | 97.93 | 97.01 | 96.05 | 93.67 | 94.78 |
Mean ± SD | 89.55 ± 3.2% | 95.89 ± 1.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, B.-X.; Cheng, D.-H.; Liu, Z.-M.; Lv, L.-H.; Guo, J.; Lu, Y.-H. Electrospun Sericin/PNIPAM-Based Nano-Modified Cotton Fabric with Multi-Function Responsiveness. Coatings 2021, 11, 632. https://doi.org/10.3390/coatings11060632
Li J, Wang B-X, Cheng D-H, Liu Z-M, Lv L-H, Guo J, Lu Y-H. Electrospun Sericin/PNIPAM-Based Nano-Modified Cotton Fabric with Multi-Function Responsiveness. Coatings. 2021; 11(6):632. https://doi.org/10.3390/coatings11060632
Chicago/Turabian StyleLi, Jia, Bo-Xiang Wang, De-Hong Cheng, Zhi-Mei Liu, Li-Hua Lv, Jing Guo, and Yan-Hua Lu. 2021. "Electrospun Sericin/PNIPAM-Based Nano-Modified Cotton Fabric with Multi-Function Responsiveness" Coatings 11, no. 6: 632. https://doi.org/10.3390/coatings11060632
APA StyleLi, J., Wang, B. -X., Cheng, D. -H., Liu, Z. -M., Lv, L. -H., Guo, J., & Lu, Y. -H. (2021). Electrospun Sericin/PNIPAM-Based Nano-Modified Cotton Fabric with Multi-Function Responsiveness. Coatings, 11(6), 632. https://doi.org/10.3390/coatings11060632