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Abstract: At present, hard coating structures are widely studied as a new passive damping method.
Generally, the hard coating material is completely covered on the surface of the thin-walled structure,
but the local coverage cannot only achieve better vibration reduction effect, but also save the material
and processing costs. In this paper, a topology optimization method for hard coated composite
plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard
coating composite plate is established. The topology optimization model is established with the
energy ratio of hard coating layer to base layer as the objective function and the amount of damping
material as the constraint condition. The sensitivity expression of the objective function to the design
variables is derived, and the iteration of the design variables is realized by the Method of Moving
Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can
obtain the optimal layout of damping materials for hard coating composite plates. The results show
that the damping materials are mainly distributed in the area where the stored modal strain energy
is large, which is consistent with the traditional design method. Finally, based on the numerical
results, the experimental study of local hard coating composites plate is carried out. The results show
that the topology optimization method can significantly reduce the frequency response amplitude
while reducing the amount of damping materials, which shows the feasibility and effectiveness of
the method.

Keywords: hard coating; thin-walled structure; topology optimization; sensitivity; damping; modal
loss factors

1. Introduction

Hard coating is a kind of coating material made of metal base, ceramic base, or both. It
is mainly used for thermal barrier, friction resistance, and corrosion resistance coating [1–3].
In recent years, it has been found that the hard coating also has the effect of damping
and vibration reduction, which shows that spraying hard coating on the structure surface
can significantly reduce the resonance stress amplitude of the thin walled structure [4–7].
Furthermore, it was found that the reason why the hard coating can reduce the vibration is
due to the internal friction between the hard coating particles [8–13]. Several microscopic
material characterization models have been created to explain the vibration reduction
mechanism of the hard coating [14–16]. The existing research on the vibration reduction
mechanism of hard coatings mostly focus on micro materials. However, it is not enough
to study the mechanism of hard coating from the perspective of hard coating dynamics.
When the hard coating is completely deposited on the surface of the structure, only a
part of the coating material can reduce the vibration amplitudes, and other materials
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will only increase the additional mass, and will not reduce the vibration amplitudes.
Therefore, partially covered of hard coating and deposited in suitable positions seems
more reasonable. It can be seen that, in order to effectively implement the hard coating
vibration reduction, it is necessary to systematically study the dynamic modeling of the
hard coating composite structure, but also to study the damping optimization problem of
the hard coating composite structure.

The dynamic modeling and analysis of hard-coating composite structures have been
widely and deeply studied. Yang et al. [17] derived the governing equation of the hard
coated composite plate, and solved its inherent characteristics based on the perturbation
method. Li et al. [18] studied the nonlinear vibration mechanism of hard coated cantilever
thin plate structure and calculated its natural frequency and vibration response by finite
element iteration method. Chen et al. [19] developed an analytical method to calculate
the free vibration characteristics and damping effect of a hard coated blisk. The above
modeling and analysis of hard coating composite structure mainly focuses on the fully
coated structure, that is, the hard coating is completely applied in the coating area. The
damping optimization of hard coating composite structure needs local coating model, but
the research on modeling and analysis of local coating composite structure is not enough.
As a new damping technology, the research on damping optimization of hard coating
composite structure is rare, but similar to viscoelastic damping structure optimization, a lot
of research has been carried out. Lumsdaine et al. [20,21] carried out shape optimization
for beam and slab structures with the goal of minimizing peak displacement (or maxi-
mizing system loss factor). Chen et al. [22] took the structural damping of the system
as the main performance index to optimize the layout of constrained damping materials.
Hou et al. [23] used genetic algorithm to determine the optimal values of the thickness of
the constrained layer and viscoelastic layer and the shear modulus of the viscoelastic layer.
Aiming at minimizing the vibration response of cylindrical shells, Zheng et al. [24] adopted
genetic optimization based on penalty function method to optimize the layout of passive
constrained damping layer. With the gradual maturity of structural topology optimization
technology [25,26]. The SIMP method and ESO method are applied to CLD processing
structure design to achieve the optimal distribution of damping materials. Zheng et al. [27]
and Zheng et al. [28] used SIMP method and moving asymptote method (MMA) to op-
timize modal damping ratio of rectangular plate treated by CLD. Fang and Zheng [29]
established the topology optimization model of plate with ESO method and minimized the
square of vibration response peak under the specified frequency band excitation.

The common coating deposition technologies include electroplating, chemical plat-
ing, chemical plating, thermal spraying, hot dipping, physical vapor deposition (PVD),
chemical vapor deposition (CVD), chemical vapor deposition (CVD), molecular beam
epitaxy (MBE), and ion beam synthesis. Among them, PVD and plasma spraying (PS) are
commonly used in the preparation of alloy coatings. Additive manufacturing (AM) realizes
the fabrication of structures by layer by layer accumulation of materials. This unique
manufacturing method can realize the free growth forming of highly complex structures,
greatly broaden the design space, and provide a powerful tool for the preparation of new
structures and materials. The geometry of hard-coating thin walled structure obtained by
topology optimization is complex, and the traditional coating preparation method cannot
directly process according to the optimized geometry, so it is often necessary to cover
the areas that don’t need coating. This approach undoubtedly causes material waste and
time-consuming. The combination of additive manufacturing technology and topology
optimization technology will facilitate the preparation of hard coatings with complex
geometry. Metal powder and ceramic powder are manufactured by traditional technology,
and then the powder is stacked according to the optimized geometry to form hard coating
by additive manufacturing technology. With the development of rapid additive manufac-
turing technology [30], the application of this technology in the preparation of hard coating
can not only achieve the purpose of material reduction, but also ensure the preparation
efficiency and accuracy.
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Hard coating structure and viscoelastic damping structure are all laminated thin-
walled structures, which mainly involve the analysis and optimization of dynamic charac-
teristics. The difficulty lies in the accurate calculation of modal damping and the sensitivity
of objective function to design variables. Although some progress has been made in topol-
ogy optimization of viscoelastic damped structures, there are still some problems that the
sensitivity calculation is not accurate and the optimization results are not ideal, especially
the topology optimization of constrained layer damping (CLD) structures. Hard damping
structures are different from the CLD structures. The elastic modulus of hard coating is
much higher than that of viscoelastic material, and the material loss factor is lower than
that of viscoelastic material. Therefore, in composite structure modeling, the calculation
of modal loss factor and the sensitivity of objective function to design variables will be
different. In this paper, a simplified finite element model is established by considering the
material parameters of hard coating composite structure. A calculation method of modal
loss factor is proposed, and a simplified topology optimization model is obtained. The
accuracy and efficiency of the proposed topology optimization design method are verified
by experiments

2. Analytic Model
2.1. Dynamic Model

The structure of cantilever thin plate partially coated with hard coating damping
material is shown in Figure 1a,b is the cross section of coating area of the thin plate. Hs
and Hc are the thickness of the substrate and the hard coating respectively, and d is the
distance from the joint surface of the hard coating and the substrate to the neutral layer
of the composite structure. The y-axis coordinate of the upper surface of the composite
plate is Hc + d, and the y-axis coordinate of the lower surface is d − hs. Although the
internal damping of the hard coating is greater than that of the metal, it is far less than
that of the viscoelastic damping material. In order to accurately describe the vibration
characteristics of the coating structure, the internal damping of the metal matrix should
also be considered. Here, the material parameters of hard coating and metal matrix are
expressed by complex modulus.

E∗c = Ec(1 + iηc)
E∗s = Es(1 + iηs)

(1)

where, Ec, Es and ηc, ηs are the complex modulus of hard coating and matrix respectively
and are the corresponding storage modulus and loss factor respectively.

Figure 1. Thin plate structure with partially covered hard coating (a) cantilever composite plate, (b) cross section of
coating area.

In this paper, the equivalent single layer theory is used for the finite element modeling.
Since the hard coating is applied partially, when the hard coating plate is divided into
several elements, there will be two types of elements in the whole system: hard-coating
composite structure elements (including both substrate and coating) and substrate elements.
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For convenience, the four node plate elements are used to simulate the above two types
of elements at the same time, but different material parameters are given. The specific
structure of the elements is shown in Figure 2, each node has five degrees of freedom,
including three degrees of freedom of translation and two degrees of freedom of rotation.
Based on the Love Kirchhoff theory, the displacements of the base layer and the constraining
layer at any point inside the element in the x- and y- directions are

u(x, y, z) = u0(x, y)− z ∂w0
∂x

v(x, y, z) = v0(x, y)− z ∂w0
∂y

w(x, y, z) = w0(x, y)
(2)

where u, v, and w are the displacement components in the x-, y-, and z-directions, respec-
tively, and u0, v0, and w0 are the midplane displacements. Z is the distance from the point
to the middle surface

Figure 2. Four node laminated rectangular element of hard coating plate.

Considering the constraints of structure performance and process conditions, the
thickness of hard coating varies from 0.01% to 10% of the substrate thickness. Therefore,
it can be approximately considered that the symmetrical central plane in the thickness
direction of the composite plate is the neutral plane. In this study, before establishing the
finite element dynamic model of composite plate, the following assumptions are made:

1. each layer of material meets the basic assumptions of material mechanics, and the
structural deformation is small deformation

2. the base and hard coating meet the Kichhoff thin plate theory hypothesis
3. ignore the shear deformation of base and hard coating
4. ignore the moment of inertia of each layer of material
5. The results show that the transverse displacement of the same coordinate position of

each layer in Z direction is equal
6. the bonding of materials in each layer is firm, and there is no relative sliding be-

tween layers.

{u0 v0 w0}T is the displacement on the datum plane, then the strain vector at any
point of the composite plate is:


εi,x
εi,y

γi,xy

 =


∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

− z


∂2w0
∂x2

∂2w0
∂y2

2 ∂2w0
∂x∂y

 i = c, s (3)
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Two-dimensional Hooke’s law can be used to express the stress-strain relationship at
any point in the finite element of hard coated composite plate

σi,x
σi,y
τi,xy

 =
E∗i

1− µi

 1 µi 0
µi 1 0
0 0 1−µi

2


εi,x
εi,y

γi,xy

 = Di{εi} i = c, s (4)

Based on the theory of elastic plate and shell, the kinetic energy and strain potential
energy of each layer of hard coated plate element are derived by energy method.

The kinetic energy of the base is as follows:

Te
s =

ρs

2

∫ a

−a

∫ b

−b

∫ d

d−hs

((
∂us

∂t

)2
+

(
∂vs

∂t

)2
+

(
∂ws

∂t

)2
)

dVe
s (5)

The kinetic energy of hard coating is as follows:

Te
c =

ρc

2

∫ a

−a

∫ b

−b

∫ hc+d

d

((
∂uc

∂t

)2
+

(
∂vc

∂t

)2
+

(
∂wc

∂t

)2
)

dVe
c (6)

The strain potential energy of base course is as follows:

Ee
s =

ρs

2

∫ a

−a

∫ b

−b

∫ d

d−hs

(
σs,xεs,x + σs,yεs,y + σs,xyεs,xy

)
dVe

s (7)

The strain potential energy of hard coating is as follows:

Ee
c =

ρc

2

∫ a

−a

∫ b

−b

∫ hc+d

d

(
σc,xεc,x + σc,yεc,y + σc,xyεc,xy

)
dVe

c (8)

Therefore, the stiffness matrix and mass matrix of the element can be obtained as follows:

Ke
i =

∫
Vci

BT DciBdV +
∫

Vsi

BT DsiBdV = Ke
ci + Ke

si (9)

Me
i =

∫
Vci

ρcNT NdV +
∫

Vsi

ρsNT NdV = Me
ci + Me

si (10)

where B and N are strain displacement matrix and shape function matrix respectively. The
global stiffness matrix and mass matrix can be obtained by assembling the element matrix
as follows:

K =
n
∑

i=1
Ke

i

M =
n
∑

i=1
Me

i

(11)

2.2. Damping Model

For a hard coated composite plate system under harmonic excitation, it is assumed
that the energy stored in the plate structure system before coating is expressed as

Es = Usmax = Tsmax (12)

where Ubmax is the maximum strain energy and Tbmax is the maximum kinetic energy. The
energy consumed in one cycle of vibration can be expressed as

∆Ws = ∆W f + ∆Wm + ∆Wa (13)
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where ∆W f is the energy consumption in the clamping area, ∆Wm is the material damping
energy consumption, and ∆Wa is the energy consumption caused by the air. Therefore, the
modal loss factor of the system before coating can be expressed as

ηs =
∆Ws

2πUsmax
=

∆W f + ∆Wm + ∆Wa

2πUsmax
(14)

The energy stored in the plate structure system after coating can expressed as

Et = Es + Ec (15)

where Es, Ec are the stored energy of the substrate and hard coating part. The energy
consumed by the system after coating in one cycle is expressed as

∆Wt = ∆W f + ∆Wm + ∆Wa + ∆Wc (16)

where ∆Wc is the energy consumption caused by hard coating. Therefore, the modal loss
factor of the plate system after coating can be expressed as

ηt =
∆Wt

2πEt
=

∆W f + ∆Wm + ∆Wa + ∆Wc

2π
(
Es + Ec

) =
ηc

Es/Ec + 1
+

ηs

Ec/Es + 1
(17)

where, ηc is the loss factor of the hard coating. ηs is the loss factor of the composite
structure system exclude the loss factor of the hard coating. For the maximum strain energy
of the hard coating is much smaller than that of metal substrate, it can be approximately
considered as ηs = ηs.

3. Topology Optimization of the Hard Coating
3.1. Optimization Model

Assuming that ∆ = Es/Ec is the variable, the partial derivative of modal loss factor ηt
of composite structure system with respect to ∆ is calculated as follows

∂ηt

∂∆
=

ηs − ηc

(∆ + 1)2 (18)

Generally, the loss factor of hard coating damping material is slightly larger than that
of base plate, so ηt ∝ 1/∆. In order to maximize the modal loss factor, the minimization of
Us/Uc can be used as the objective function. Taking the relative density of hard coating
finite element as design variable and volume percentage as constraint condition, the
topology optimization mathematical model of hard coating structure system is established

Find : x = {x1, x2, . . . , xe, . . . , xn}T

Min : J = Us
Uc

Subject to :


n
∑

e=1
xeve − αV0 ≤ 0

(K− λr M)φr = 0
0 ≤ xe ≤ 1, e = 1, 2, . . . , n

(19)

where ve and V0 are the finite element volume and design domain of the hard coating, α is
the volume ratio, xe is the relative density of the element.

According to the material interpolation theory of SIMP method, the stiffness matrix
and mass matrix of hard coating finite element can be obtained as follows

Ke
c = xp

e Ke
c

Me
c = xq

e Me
c

(20)
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where Ke
c and Me

c are the element stiffness matrix and mass matrix when the relative density
of the element is 1, and p and q are the penalty coefficients. The overall stiffness matrix
and mass matrix are as follows

K = ∑
e

Ke
s + ∑

e
Ke

c

M = ∑
e

Me
s + ∑

e
Me

c
(21)

Optimization algorithm is the core of continuum topology optimization technol-
ogy. At present, there are two mainly optimization criterion method and mathematical
programming method. The main idea of optimization criterion method is to construct
Lagrange equation and introduce Kuhn Tucke condition to carry out variable iteration.
Mathematically, the method that the formation condition of optimal solution meets certain
optimization criterion is called optimization criterion method. The optimization criterion
method needs to determine the constraint conditions and solve the Lagrange multiplier
in the iterative process, so it is more suitable for single objective topology optimization,
with fast convergence and less iterations, and is one of the most widely used algorithms
in topology optimization. There are two kinds of mathematical programming methods:
linear programming and nonlinear programming. At present, the common methods are
sequential linear programming (SLP), sequential quadratic programming (SQP) and convex
programming belong to the category of nonlinear programming. The most widely used
convex programming method is the method of moving asymptotes (MMA) [31], which is a
very effective algorithm for solving large complex problems. This paper will use MMA
algorithm to solve the optimization problem iteratively.

The iterative method based on the gradient of objective function is used to solve the
topology optimization model, and the sensitivity expression of the objective function is
required. The sensitivity formula of objective function to design variables is as follows:

∂J
∂xe

=
1

U2
c

(
∂Us

∂xe
Uc −

∂Uc

∂xe
Us

)
(22)

The sensitivities of strain energy for substrate and hard coating is calculated as follows:

∂Us

∂xe
=

1
2

2uT
r Ks

∂ur

∂xe
(23)

∂Uc

∂xe
=

1
2

(
2uT

r Kc
∂ur

∂xe
+ uT

r
∂Kc

∂xe
ur

)
(24)

Considering that the change of hard coating has little effect on the modal shapes of the
composite plate system, it can be considered that ∂ur/∂xe = 0. Therefore, the sensitivity of
the objective function to the design variables can be expressed as follows:

∂J
∂xe

=
1

(uT
r Kcur)

2

(
−uT

r
∂Kc

∂xe
ur · uT

r Ksur

)
(25)

When the SIMP method is used to investigate topology optimization design prob-
lems, the inevitable numerical problem is the checkerboard pattern, which will lead to
the optimized results can not be applied to engineering practice. Sensitivity filtering or
density filtering can effectively improve the problem, and Sigmund [32] has compared and
summarized a whole range of filtering methods. In this paper, the sensitivity ∂J/∂xe is
modified by the sensitivity filtering method as follows:

∂J
∂xe

=
1

max(γ, xe) ∑
i∈Ne

Hei
∑

i∈Ne

Heixi
∂J
xi

(26)
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where Ne is the set of elements I for which the center-to-center distance D(e, i) to element e
is smaller than the filter radius rmin. The term γ is a positive number introduced in order to
avoid division by zero. Hei is a weight factor defined as:

Hei = max(0, rmin − D(e, i)) (27)

3.2. Optimization Procedure

The optimization process is shown in Figure 3. The specific steps are as follows:

1. Define volume constraint fraction, initialize design variables and set the correspond-
ing parameters.

2. Reassemble the mass matrix and stiffness matrix of the hard coating structure accord-
ing to the value of design variables and SIMP material interpolation model.

3. Carry out the modal analysis of the hard coating structure and calculate the objective
function value.

4. Analysis and filter the sensitivities of objective function to prevent checkerboard
patterns in the design.

5. Update the design variables using the MMA algorithm.
6. Check whether the result converges, and if so, end the iteration. If it does not converge,

the iteration is repeated.
7. Output design variables and object values and display the topological distribution

geometry of hard coating materials.

Figure 3. Block diagram of the optimization procedure.

4. Numerical Verification
4.1. Modal Strain Energy Distribution

According to the optimization procedure shown in Figure 2, this section adopts single
objective optimization method and multi-objective optimization method respectively to
optimize the topology of the hard coated composite plate partially covered with hard
coated damping material. In order to study the relationship between the modal strain
energy and the distribution of damping materials, the modal strain energy distribution of
the first six orders of base metal plate is calculated.

The geometric and material parameters of base plate and hard coating are shown in
Table 1. One side of the cantilever plate is coated with Mg-Al hard coating. Among them,
Young’s modulus of Mg−Al hard coating was studied by vibration beam method, and the
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material parameters of titanium plate were obtained from metal materials manual. For the
considered cantilever thin plate, the values of the first six natural frequencies are gotten by
the modal analysis program based on the proposed finite element dynamic mode and the
relevant results are listed in Table 2. The corresponding modal strain energy distribution
for each order is shown in Figure 4 and the 3840 elements are disposed in a 48 × 80 matrix
in the figure.

Table 1. The Geometry and Material Parameters of Substrate and Hard Coating.

Lamina Length (m) Width (m) Thickness
(mm)

Young’s
Modulus

Loss Factor
(Gpa)

Poisson
Ratio

Density
(kg/m3)

Base plate 0.2 0.12 2 110 0.0008 0.3 4420
coating 0.2 0.12 0.02 50 0.02 0.3 2600

Table 2. The First Six Natural Frequencies of Thin Plate Structure.

Orders Nature Frequency/Hz

1 41.48
2 152.81
3 258.13
4 508.49
5 714.45
6 809.60

Figure 4. The modal strain energy distribution of the first six orders of cantilever thin plate: (a) The first order; (b) the
second order; (c) the third order; (d) the fourth order; (e) the fifth order; (f) the sixth order.

The first, second and third modes are bending modes, and the second, fourth and
sixth modes are torsion modes. There are no repeated eigenvalues or similar complex
eigenvalues. The characteristic mode corresponding to the characteristic frequency is
unique, which indicates that the sensitivity analysis method of formula 24 is effective for
the structure.
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4.2. Damping Optimization for a Single Mode

In order to verify the correctness of the proposed method, the relationship between
the distribution of coating damping material and the distribution of modal strain energy of
base course is studied with a single modal loss factor as the optimization design objective.
The volume percentage of coating damping material after optimization is set to 50%. Before
the optimization iteration, all design variables are initialized to 0.5, and the lower bound
of design variables is set to 0.001. In order to avoid matrix singularity in the optimization
process. The material parameters of substrate and hard coating are shown in Table 1. In
order to ensure the stability of the optimization process and the accuracy of the optimization
results, the design domain is discretized by 80 × 48 4-node rectangular finite elements.

Figure 5a–f shows the topology optimization results of the hard coating damping
material for the first six modes of the hard coating cantilever plate with the maximum
modal loss factor as the optimization design objective under the given volume percentage
constraint. It can be seen that the distribution of damping layer material is consistent with
the modal strain energy of base metal plate. It also shows that the hard coating damping
material can absorb the vibration energy better in the area with high modal strain energy, so
as to achieve the effect of vibration suppression. Table 3 shows the modal loss factors of the
full covered plate and the modal loss factors of the corresponding order after optimizing
the partially covered plate with the modal loss factors of each order as the optimization
design objective. Taking the first-order modal loss factor and the second-order modal loss
factor as the optimization design objectives, the optimization results are compared with
the full coverage method, the reduction of modal loss factor is less than 10% the modal loss
factor of the other four optimization results is less than 20% lower than that of full coverage.

Figure 5. Topology optimization of the cantilever hard coating thin plate for single mode: (a) The first order; (b) the second
order; (c) the third order; (d) the fourth order; (e) the fifth order; (f) the sixth order.

Table 3. The Modal Loss Factors of the Full Covered Plate and the Optimized Partially Covered Plate.

Order Fully Covered Partially Covered Difference (%)

1 0.0031 0.0029 6.45
2 0.0031 0.0025 19.35
3 0.0031 0.0027 12.90
4 0.0031 0.0024 22.58
5 0.0031 0.0025 19.35
6 0.0031 0.0028 9.68
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4.3. Damping Optimization for a Multiple Mode

This case study focuses on topology optimization of hard-coating thin plate for mul-
tiple eigenmode, so as to achieve vibration suppression within a certain frequency band-
width. The cantilever plate is still used for research. The geometric parameters, material
properties and finite element mesh density of the structure are the same as those in the
previous single objective optimization. For convenience, only the first four modes are of
interest. The volume fraction ratio of the hard coating layer is restricted by α = 0.5. The
first 40 eigenmodes are involved in the computation (i.e., N = 40).

It can be seen that the distribution trend of hard coating damping material can not be
obtained according to the distribution of substrate modal strain energy when optimizing
multiple modes at the same time. Moreover, the optimization results of multi-mode and
single mode are also different.

Figure 6a shows the topology optimization results for the first three modes, with
weight coefficients of 0.2, 0.5 and 0.3 respectively. Figure 5b shows the topology opti-
mization results for the second, third and fourth modes, with weight coefficients of 0.4,
0.1 and 0.5 respectively. It can be seen that the distribution trend of hard coating damp-
ing material can not be obtained according to the distribution of substrate modal strain
energy when optimizing multiple modes at the same time. Moreover, the optimization
results of multi-mode and single mode are also different. The distribution of the hard
coating damping material is the result of the joint action of the modal strain energy and the
weight coefficient.

Figure 6. Topology optimization of the cantilever hard coating thin plate for multiple mode: (a) Opti-
mization for the 1st, 2nd, and 3rd mode; (b) Optimization for the 2nd, 3rd, and 4th mode.

5. Experimental Verification

In order to verify the correctness of the topology optimization model and algorithm,
two kinds of multi-objective optimization results were taken as examples, and the hard
coating composite plate specimens were fabricated by plasma spraying. The vibration
test platform and test principle are shown in Figure 7. The vibration test system includes
hammer, laser Doppler vibration meter, LMS data acquisition front end, mobile workstation,
fixture, vibration table and modal analysis software. The experimental process is as follows:

1. the hard coated cantilever plate is fixed on the shaking table with a fixture
2. the excitation signal is generated by hammering the surface of the composite plate
3. the vibration acceleration response of the composite plate is measured with a

laser vibrometer
4. the response signal collected by the LMS data acquisition mobile front end is trans-

mitted to the mobile workstation, and the analysis software processes the response
signal and outputs the results.

In this paper, the full coverage hard coated plate, bare plate and the above two kinds of
multi-objective optimization of local coverage hard coated plate are studied. The positions
of the excitation input point and the response output point of the four plates are consistent.
Figure 8 shows the experimental results of the acceleration frequency response. It can be
seen that compared with the smooth plate, the composite plate covered with damping
hard coating has smaller resonance response amplitude. The larger the weight coefficient
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is, the more obvious the suppression of resonance response amplitude is. This proves the
correctness of the proposed method. At the same time, the optimization of the first three
modes also has a certain vibration suppression effect on the resonance response amplitude
at the fourth-order modal frequency, which is mainly because the damping material is also
distributed in the higher position of the fourth-order modal strain energy.

Figure 7. Schematic of vibration test system of the CLD treated plate.

Figure 8. Acceleration amplitude versus frequency at the laser point of the composite cantilever plate.

6. Conclusions

Based on the energy method, the dynamic model of partially covered hard coating
thin plate is established. Based on the SIMP method, the relationship between the stiffness
matrix, mass matrix and the relative density of the element is obtained. Based on the sim-
plified sensitivity calculation method, the sensitivity of the objective function is analyzed.
The gradient based MMA optimization algorithm is used to update the design variables.
Numerical examples and experimental results show that:

1. Through the topology optimization results of multi single mode, it can be seen that the
hard coating damping materials are mainly distributed in the region with high modal
strain energy, which is consistent with the traditional empirical method. Compared



Coatings 2021, 11, 774 13 of 14

with full coverage, local coverage can not only effectively suppress vibration, but also
save materials. And, the less the coating material, the smaller the change of the matrix
structure itself.

2. The topology optimization of hard coated thin plate with multiple mode loss factors
can effectively suppress the vibration in a certain frequency band. In practical engi-
neering, the vibration environment of the thin walled structure is often the combined
action of various vibration loads in a certain frequency band, which shows that the
method proposed in this paper has practical significance.

3. The objective function converges to the optimal value stably, the optimization result is
clear, there is no checkerboard phenomenon, and it is easy to reconstruct and process.
The experimental results are consistent with the simulation results. The above results
show that the method is effective and practical.

4. The experimental results show that the proposed topology optimization design
method can effectively suppress the vibration in a certain frequency band, which
proves the correctness of the proposed method.
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