Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Characteristics of Flaxseed
2.2. Proximate Analysis of Flaxseed
2.3. Film Formation and Casting
2.4. Rheological Analysis
2.5. Film Characterization
2.5.1. Thickness
2.5.2. Moisture Content of the Film
2.5.3. Color
2.5.4. Light Transmission and Transparency
2.5.5. Water Vapor Permeability
2.5.6. Solubility Index
2.6. Mechanical Properties
2.6.1. Tensile Strength and Elongation at Break
2.6.2. Seal Strength
2.7. Thermal Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physical and Proximate Analysis of Flaxseed
3.1.1. Physical Characteristics
3.1.2. Proximate Composition
3.2. Rheological Behavior
3.3. Film Characterization
3.3.1. Thickness
3.3.2. Moisture Content
3.3.3. Color
3.3.4. Light Transmission and Transparency
3.3.5. Water Vapor Permeability
3.3.6. Solubility Index
3.4. Mechanical Properties of Films
3.4.1. Tensile Strength and Elongation at Break
3.4.2. Seal Strength
3.5. Thermal Properties
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deluca, J.A.; Garcia-Villatoro, E.L.; Allred, C.D. Flaxseed bioactive compounds and colorectal cancer prevention. Curr. Oncol. Rep. 2018, 20, 59. [Google Scholar] [CrossRef]
- Ganorkar, P.M.; Jain, R.K. Flaxseed—A nutritional punch. Int. Food Res. J. 2013, 20, 519–525. [Google Scholar]
- Khare, B.; Sangwan, V.; Rani, V. Influence of sprouting on proximate composition, dietary fiber, nutrient availability, antinutrient, and antioxidant activity of flaxseed varieties. J. Food Process. Preserv. 2021, 45, e15344. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Du, W.X.; de Jesús Avena-Bustillos, R.; Soares, N.D.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Trif, M.; Vodnar, D.C.; Mitrea, L.; Rusu, A.V.; Socol, C.T. Design and development of oleoresins rich in carotenoids coated microbeads. Coatings 2019, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Xiao, S.; Li, W.; Wang, W.; Chen, H.; Yang, F.; Qin, C. Chitosan-a corn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromol. 2019, 135, 344–352. [Google Scholar] [CrossRef]
- Rusu, A.V.; Criste, F.L.; Mierliţă, D.; Socol, C.T.; Trif, M. formulation of lipoprotein microencapsulated beadlets by ionic complexes in algae-based carbohydrates. Coatings 2020, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of plasticized starch-based films. Starch-Stärke 2000, 52, 118–124. [Google Scholar] [CrossRef]
- Farooq, M.; Azadfar, E.; Rusu, A.; Trif, M.; Poushi, M.K.; Wang, Y. improving the shelf life of peeled fresh almond kernels by edible coating with mastic gum. Coatings 2021, 11, 618. [Google Scholar] [CrossRef]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutierrez, G.; Vioque, B.; Rubio-Senent, F.; Fernandez Bolanos, J. Physical and functional properties of pectin-fish gelatin films containing the olive phenols hydroxyl tyrosol and 3,4-dihydroxyphenylglycol. Carbohydr. Polym. 2017, 178, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Natural pectin polysaccharides as edible coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef] [Green Version]
- Al-Asmar, A.; Giosafatto, C.V.L.; Sabbah, M.; Sanchez, A.; Villalonga Santana, R.; Mariniello, L. Effect of mesoporous silica nanoparticles on the physicochemical properties of pectin packaging material for strawberry wrapping. Nanomaterials 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giosafatto, C.V.L.; Sabbah, M.; Al-Asmar, A.; Esposito, M.; Sanchez, A.; Villalonga Santana, R.; Cammarota, M.; Mariniello, L.; Di Pierro, P.; Porta, R. Effect of mesoporous silica nanoparticles on glycerol-plasticized anionic and cationic polysaccharide edible films. Coatings 2019, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Luna-Sosa, B.; Martínez-Ávila, G.C.; Rodríguez-Fuentes, H.; Azevedo, A.G.; Pastrana, L.M.; Rojas, R.; Cerqueira, M.A. Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings 2020, 10, 467. [Google Scholar] [CrossRef]
- Ngo, T.M.P.; Nguyen, T.H.; Dang, T.M.Q.; Tran, T.X.; Rachtanapun, P. Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan. Int. J. Mol. Sci. 2020, 21, 2224. [Google Scholar] [CrossRef] [Green Version]
- Tumbarski, Y.; Petkova, N.; Todorova, M.; Ivanov, I.; Deseva, I.; Mihaylova, D.; Ibrahim, S.A. Effects of pectin-based edible coatings containing a bacteriocin of Bacillus methylotrophicus BM47 on the quality and storage life of fresh blackberries. Ital. J. Food Sci. 2020, 32, 420–437. [Google Scholar]
- AOAC. Official Methods of Analyses, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Kaur, R.; Kaur, K. Effect of processing on color, rheology and bioactive compounds of different sweet pepper purees. Plant Foods Hum. Nutr. 2012, 75, 369–375. [Google Scholar] [CrossRef]
- Tee, Y.B.; Wong, J.; Tan, M.C.; Talib, R.A. Development of edible film from flaxseed mucilage. BioResources 2016, 11, 10286–10295. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Floros, J.D. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast. Film Sheeting 1997, 13, 287–298. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 153, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Pirsa, S.; Mohtarami, F.; Kalantari, S. Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties. Chem. Rev. Lett. 2020, 3, 98–103. [Google Scholar]
- Das, M.; Chowdhury, T. Heat sealing property of starch basedself-supporting edible films. Food Packag. Shelf Life 2016, 9, 64–68. [Google Scholar] [CrossRef]
- Jridi, M.; Abdelhedi, O.; Salem, A.; Kechaou, H.; Nasri, M.; Menchari, Y. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll. 2020, 103, 105688. [Google Scholar] [CrossRef]
- Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech 2008, 9, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Herchi, W.; Bahashwan, S.; Sebei, K.; Saleh, H.B.; Kallel, H.; Boukhchina, S. Effects of germination on chemical composition and antioxidant activity of flaxseed (Linum usitatissimum L.) oil. Grasas y Aceites 2015, 66, 057. [Google Scholar] [CrossRef] [Green Version]
- Forstner, S.; Rusu, A. Development of personalised food for the nutrition of elderly consumers. In Know Your Food: Food Ethics and Innovation; Academic Publishers: Wageningen, The Netherlands, 2015; pp. 24–27. [Google Scholar]
- Rusu, A.; Randriambelonoro, M.; Perrin, C.; Valk, C.; Álvarez, B.; Schwarze, A.-K. Aspects influencing food intake and approaches towards personalising nutrition in the elderly. J. Popul. Ageing 2020, 13, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.K.; Chaturvedi, K.; Yadav, S.K. Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocoll. 2019, 91, 127–135. [Google Scholar]
- Meza, B.E.; Peralta, J.M.; Zorrilla, S.E. Rheological properties of a commercial food glaze material and their effect on the film thickness obtained by dip coating. J. Food Process Eng. 2015, 38, 510–516. [Google Scholar] [CrossRef]
- Ni, X.; Wang, K.; Wu, K.; Corke, H.; Nishinari, K.; Jiang, F. Stability, microstructure and rheological behavior of konjac glucomannan- zein mixed systems. Carbohydr. Polym. 2018, 188, 260–267. [Google Scholar] [CrossRef]
- Arham, R.; Salengke, S.; Metusalach, M.; Mulyati, M.T. Optimization of agar and glycerol concentration in the manufacture of edible film. Int. Food Res. J. 2018, 25, 1845–1851. [Google Scholar]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Namratha, S.; Sreejit, V.; Preetha, R. Fabrication and evaluation of physicochemical properties of probiotic edible film based on pectin–alginate–casein composite. Int. J. Food Sci. Technol. 2020, 55, 1497–1505. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Development and characterization of new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502. [Google Scholar] [CrossRef]
- Salehi, F. Characterization of new biodegradable edible films and coatings based on seeds gum: A review. J. Packag. Technol. Res. 2019, 3, 193–201. [Google Scholar] [CrossRef]
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; de Oliveira Rios, A.; Flôres, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Paulson, A.T. Mechanical and water vapor barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Pierro, P.; Di Mariniello, L.; Giosafatto, C.V.L.; Masi, P.; Porta, R. Solubility and permeability properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. Food Biotechnol. 2006, 19, 37–49. [Google Scholar] [CrossRef]
- McHugh, T.H.; Avena-Bustillas, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [Google Scholar] [CrossRef]
- Tee, Y.B.; Tee, L.T.; Daengprok, W.; Talib, R.A. Chemical, physical, and barrier properties of edible film from flaxseed mucilage. BioResources 2017, 12, 6656–6664. [Google Scholar] [CrossRef] [Green Version]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 2011, 84, 477–483. [Google Scholar] [CrossRef]
- Kumar, N. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutr. Food Sci. 2019, 50, 793–823. [Google Scholar] [CrossRef]
- Dietrich, T.; Velasco, M.V.; Echeverría, P.; Pop, B.; Rusu, A. Crop and plant biomass as valuable material for BBB. Alternatives for valorization of green wastes. In Biotransformation of Agricultural Waste and by-Products: The Food, Feed, Fibre, Fuel (4F) Economy; Elsevier: San Diego, CA, USA, 2016. [Google Scholar]
- Pitak, N.; Rakshit, S.K. Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables. LWT-Food Sci. Technol. 2011, 44, 2310–2315. [Google Scholar] [CrossRef]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-box model-based gelation of alginate and pectin: A review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef]
- Voon, H.C.; Bhat, R.; Easa, A.M.; Liong, M.T.; Karim, A.A. Effect of addition of halloysitenanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food Bioprocess Technol. 2012, 5, 1766–1774. [Google Scholar] [CrossRef]
- Iijima, M.; Hatakeyama, T.; Nakamura, K.; Hatakeyama, H. Thermomechanical analysis of polysaccharide hydrogels in water. J. Therm. Anal. Calorim. 2001, 64, 617–627. [Google Scholar] [CrossRef]
Sample No. | Film | Flaxseed Meal (g) | Pectin (g) | Glycerol (mL) | Water (mL) |
---|---|---|---|---|---|
1. | Control | 0.0 | 7.0 | 3.0 | 90.0 |
2. | Test-1 | 2.0 | 5.0 | 3.0 | 90.0 |
3. | Test-2 | 7.0 | 0.0 | 3.0 | 90.0 |
Physical Attributes | |
---|---|
Length (mm) | 5.74 ± 0.01 |
Width (mm) | 2.28 ± 0.15 |
Thickness (mm) | 2.28 ± 0.15 |
1000 kernel weight (g) | 5.56 ± 0.25 |
Bulk density (kg/m3) | 650 ± 0.2 |
Tapped density (kg/m3) | 670 ± 0.1 |
True density (kg/m3) | 1110 + 0.2 |
Angle of repose (°) | 6.37 ± 0.01 |
Hausner’s ratio | 1.030 ± 0.01 |
Carr’s index | 2.98 ± 0.00 |
Porosity (%) | 39.63 ± 0.01 |
Proximate Composition | |
Moisture content (%) | 2.25 ± 0.04 |
Ash content (%) | 18.39 ± 0.11 |
Crude protein (%) | 4.17 ± 0.14 |
Crude fat (%) | 39.78 ± 0.06 |
Crude fiber (%) | 26.29 ± 0.14 |
Total carbohydrates (%) | 35.50 ± 0.04 |
Sample | K (Pa·sn) | N | R2 |
---|---|---|---|
Control | 1.212 | 0.675 | 0.98 |
Test-1 | 1.325 | 0.712 | 0.99 |
Test-2 | 1.002 | 0.725 | 0.95 |
Film Characterization | Control | Test-1 | Test-2 |
---|---|---|---|
Thickness (mm) | 0.625 ± 0.01 b | 0.773 ± 0.03 a | 0.241 ± 0.01 c |
Moisture content (%) | 35.92 ± 0.05 a | 35.53 ± 0.04 c | 35.75 ± 0.07 b |
Color | |||
L* | 65.62 ± 0.12 a | 59.47 ± 0.14 b | 53.26 ± 0.15 c |
a* | 5.10 ± 0.14 a | 4.98 ± 0.09 b | 4.10 ± 0.18 c |
b* | 9.68 ± 0.09 c | 14.36 ± 0.17 b | 19.54 ± 0.11 a |
Light transmission and transparency | 38.25 ± 0.02 b | 17.78 ± 0.01 c | 44.63 ± 0.02 a |
Water vapor permeability(mg mm day−1 cm−2) | 0.981 ± 0.03 c | 0.992 ± 0.01 b | 1.035 ± 0.01 a |
Mechanical Properties | |||
Tensile strength (Mpa) | 3.74 ± 0.10 a | 3.97 ± 0.14 b | 1.71 ± 0.09 c |
Elongation at break (%) | 13.42 ± 1.57 a | 11.44 ± 1.27 b | 6.53 ± 1.12 c |
Seal strength (N/m) | 50.32 ± 0.10 a | 49.69 ± 0.10 b | 35.87 ± 0.10 c |
Thermal Analysis | |||
Tg °C (glass transition) | 72.35 ± 0.10 a | 67.29 ± 0.10 b | 62.10 ± 0.10 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangar, S.P.; Singh, A.; Trif, M.; Kumar, M.; Kumar, P.; Kaur, R.; Kaur, N. Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern. Coatings 2021, 11, 1106. https://doi.org/10.3390/coatings11091106
Bangar SP, Singh A, Trif M, Kumar M, Kumar P, Kaur R, Kaur N. Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern. Coatings. 2021; 11(9):1106. https://doi.org/10.3390/coatings11091106
Chicago/Turabian StyleBangar, Sneh Punia, Ajay Singh, Monica Trif, Manoj Kumar, Pradyuman Kumar, Ramandeep Kaur, and Navjeet Kaur. 2021. "Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern" Coatings 11, no. 9: 1106. https://doi.org/10.3390/coatings11091106
APA StyleBangar, S. P., Singh, A., Trif, M., Kumar, M., Kumar, P., Kaur, R., & Kaur, N. (2021). Process Parameter Optimization and Characterization for an Edible Film: Flaxseed Concern. Coatings, 11(9), 1106. https://doi.org/10.3390/coatings11091106