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Abstract: The present work is devoted to the study of magnetohydrodynamic micropolar fluid flow
in a permeable channel with thermal radiation. The Rosseland approximation for thermal radiation
is taken into account in the modelling of heat transfer. The governing equations are expressed
in non-dimensional form. The Homotopy Perturbation Method (HPM) is briefly introduced and
applied to derive the solution of nonlinear equations. The effects of various involved parameters
like Reynolds number, microrotation parameter and Prandtl number on flow and heat transfer are
discussed. Further, their effects on Nusselt and Sherwood numbers are also investigated from the
physical point of view. Analytic solutions of the problem are obtained by HPM and a numerical
technique bvp4c package MATLAB is applied to predict the graphs between different parameters.

Keywords: micropolar fluid; permeable channel; homotopy perturbation method; heat transfer;
magnetohydrodynamic; thermal radiation

1. Introduction

From the industrial point of view, the process of heat and mass transfer has a great im-
pact. Many researchers concentrate on this area. In particular, in the metallurgical industry,
an application of heat transfer criterion has been studied with magnetohydrodynamic mi-
cropolar fluid flows. Mohamed and Abo-Dahab [1], Perdikis and Raptis [2] and Raptis [3]
discussed the impact of heat and mass transfer in micropolar and magnetohydrodynamic
micropolar fluid flows in the presence of various characteristics like thermal radiation,
heat generation, and porous media. Seddeek et al. [4] obtained the analytic solution of
the problem leading to the effect of radiation on the flow of a magneto-micropolar fluid
past a continuously moving plate with suction and blowing. El-Arabawy [5] observed
the behaviour of suction and injection in his problem. On the other hand, Sharma and
Gupta [6] studied the effects of porosity and thermal convection on micropolar fluids. The
numerical simulation of the solution of micropolar fluid flows with suction and injection
has been discussed by Subhadra et al. [7], Takhar et al. [8], Kelson and Farrell [9], and
Muhammad et al. [10]. A few years ago, the flows in permeable channels and circular pipes
made a considerable impact, drawing attention to these researchers.
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In his work, Berman [11] showed that the mathematical equations could be reduced
to a single 4th-order nonlinear ordinary differential. Terrill and Shrestha [12] and Asghar
et al. [13] studied the behaviour of permeabilities in channel flows. Most of the scientific
problems are nonlinear in nature, and such problems do not have an analytic solution;
therefore, other methods like ADM (Adomian decomposition method) and HPM (homo-
topy perturbation method) can be applied to obtain an analytic solution to these types of
scientific problems. In recent years, due to its simplicity and growing interest, the homotopy
perturbation technique in nonlinear problems has been applied. Berman [14,15] devel-
oped and formulated the homotopy perturbation method and proved that this method is
compatible with nonlinear physical problems. Ganji [16], Biazar [17], Fereidoon et al. [18],
Hemeda [19], Aminikhah and Hemmatnezhad [20], Soltanian et al. [21], and Yildirim [22]
have applied HPM to obtain analytic solutions. Sheikholeslami [23,24] also used the HPM
method in his studies. Heat transfer in a permeable channel in the presence of microp-
olar fluid flow using the analytic method was investigated by M.Sheikholeslami and M.
Hatami and D.D. Ganji [25], and A. Mirzaaghaian and D.D. Ganji [26] found the DTM
solution for micropolar fluid flow and heat transfer through permeable walls. Homotopy
perturbation technique has been used by J.H. He [27]. P. Sibanda et al. [28] observed the
flow of a micropolar fluid in channel with heat and mass transfer and H. Mirgolbabaee
et al. [29] studied semi-analytic investigation on micropolar fluid flow and heat transfer
in a permeable channel using AGM. Some of the boundary value problems of micropolar
fluid flow were investigated by Bhupander Singh [30–32]. Hayder I. Mohammed et al. [33]
investigated the improved melting of latent heat storage via a porous medium and uniform
Joule heat generation, and Milad Ghaneifar et al. [34] analyzed hybrid nanofluid flow and
the heat transfer characteristics of a heat sink partially fitted with a multilayered porous
medium. Mohammad Ghalambaz et al. [35] addressed the melting flow and heat transfer
of electric conductive phase change materials (PCMs) subject to a variable magnetic field
in a cavity enclosure and determined that the effect of the magnetic field on the melting
behavior of PCM is negligible at the initial stages of melting. H. Ali Farooq et al. [36]
studied numerically the MHD mixed convection due to a rotating circular solid cylinder in
a trapezoidal enclosure filled with Cu-water nanofluid saturated with a porous media, and
found that the vertical magnetic field decreased stream function values more than inclined
and horizontal fields. M. Ghalambaz et al. [37] investigated the flow and thermal behavior
of nano-encapsulated phase change materials(NEPCM) dispersed in a liquid over a vertical
flat plate, and found that the decrease in fusion temperature of NEPCM cores enhances
heat transfer.

In the present paper, we applied HPM to find the approximate series solutions of
velocity, microrotation, temperature, and solute concentration; their graphical representa-
tions were obtained by bvp4c routine in MATLAB to observe how velocity, micro-elements,
temperature, and mass concentration are influenced by Reynolds numbers, Prandtl number,
micropolar parameter, spin gradient viscosity, and Peclet number for the diffusion of heat
and mass.

2. Formulation of the Problem

Here, a laminar incompressible micropolar fluid was considered along a two-dimensional
permeable channel with porous walls through which fluid was uniformly injected or re-
moved with velocity v0. The walls of the channel were taken to be parallel to x-axis at 2 h
distance apart with lower boundary y = −h; upper y = h; and y-axis taken perpendicular to
the walls. The lower channel wall was maintained at temperature T1 and solute concentra-
tion C1, while the upper wall was maintained with temperature T2 and solute concentration
C2. A uniform magnetic field B was applied perpendicular to the channel walls. (Figure 1).
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Figure 1. Geometrical view of the problem.

Following [25,26], the governing equations of the problem are

∂u
∂x

+
∂v
∂y

= 0 (1)
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0u (2)
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ρ

(
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+ v
∂v
∂y

)
= −∂P

∂y
+ (µ + κ)

(
∂2v
∂x2 +

∂2v
∂y2

)
− κ

∂N
∂x

(4)

ρ

(
u

∂T
∂x

+ v
∂T
∂y

)
=

K1

Cp

∂2T
∂y2 −

1
Cp

∂qr

∂y
(5)

ρ

(
u

∂C
∂x

+ v
∂C
∂y

)
= D∗

∂2C
∂y2 (6)

where u and v denote the velocity components along x-axis and y-axis directions, respec-
tively, and ρ is the fluid density, µ is the dynamic viscosity, κ is the material parameter, N is
the microrotation velocity, P is the fluid pressure and T, C and Cp are the fluid temperature,
species concentration and specific heat at constant pressure, respectively, K1 is the thermal
conductivity, D∗ is the molecular diffusivity, j is the micro-inertia density, vs =

(
µ + κ

2
)

j is
the microrotation viscosity and qr is the radiative heat flux.

The appropriate boundary conditions are

u = 0, v = −v0, N = −s
∂u
∂y

, T = T1, C = C1 at y = −h (7)

u =
u0x

h
, v = v0, N = −s

∂u
∂y

, T1 = T2, C = C2at y = +h (8)

where s denotes the boundary parameter representing the degree to which microelements
are free to rotate near the channel walls. The case s = 0 means the strong concentration
which shows that microelements are not rotating near the channel walls, s = 1/2 shows the
weak concentrations and vanishing of the anti-symmetric part of the stress tensor, whereas
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s = 1 represents turbulent flow [26]. We introduced the following non-dimensional
similarity variables in the case of strong concentration as:

η =
y
h

, ψ = −v0x f (η), N =
v0x
h2 g(η), θ(η) =

T − T1

T2 − T1
, φ(η) =

C− C1

C2 − C1
(9)

where,T2 = T1 + Ax, C2 = C1 + Bx with A and B as constants [26]. The velocity components
of flow are defined by stream function as u = ∂ψ

∂y , v = − ∂ψ
∂x .

Using Similarity Transformations (9), Equations (2)–(4), after eliminating, p become

(1 + N1) f ′v − N1g′′ − Re( f ′ f ′′ − f f ′′′ )−M f ′′ = 0 (10)

N2g′′ + N1( f ′′ − 2g)− N3Re( f g′ − f ′g) = 0 (11)

Using Roseland approximation, we have qr = − 4σ0
3k0

∂T4

∂y where σ0 the Stefan Boltzmann
constant is and k0 is the mean absorption coefficient. Assuming that the difference in
temperature within the flow is such that T4 can be expressed as linear combination of the
temperature. Therefore expanding T4 about T∞ and ignoring higher order terms, we have
T4 ∼= −3T4

∞ + 4T3
∞T

qr = −
4σ0

3k0

∂

∂y

(
−3T4

∞ + 4T3
∞T
)
= −16σ0T3

∞
3k0

∂T
∂y

,
∂qr

∂y
= −16σ0T3

∞
3k0

(
Ax
h2 θ′′ (η)

)
(12)

Using Similarity Transformations (9) and Equation (12), Equations (5) and (6) lead to

θ′′ +
Peh(

1 + 4
3 Nr

)( f ′θ − f θ′
)
= 0 (13)

φ′′ + Pem
(

f ′φ− f φ′
)
= 0 (14)

With Boundary Conditions

f ′(−1) = 0, f (−1) = −1, g(−1) = 0, θ(−1) = 0, φ(−1) = 0 (15)

f ′(1) = −1, f (1) = 1, g(1) = 1, θ(1) = 1, φ(1) = 1 (16)

where N1 = κ
µ is the micro-polar parameter, M =

σB2
0h2

µ is the Magnetic parameter, N2 = νs
µh2

is the spin gradient viscosity parameter, N3 = j
h2 , Nr = 4σ0T3

∞
κ1κ0

is the Radiation parameter,

Pr = νρCp
κ1

is the Prandtl number.Re = v0h
ν is the Reynolds number [for suction Re > 0, for

injection Re < 0], Peh = PrRe is the Peclet number for diffusion of heat, Pem = ScRe is the
Peclet number for diffusion of mass and Sc = ν

D∗ is the generalized Schmidt number.
The physical quantities which are of greatest interest are local Sherwood number and

local Nusselt number which are defined as follows:

Shx = −∅′(−1) (17)

Nux= −(1 +
4Nr

3
)θ′(−1) (18)

3. Analysis of the Homotopy Perturbation Method (HPM)

The basic idea of HPM is illustrated in [27]. Accordingly, we consider the following
equation

A(u)− f(r) = 0, r ∈ Ω (19)

with the boundary condition

B
(

u,
∂u
∂n

)
= 0, r ∈ Γ, (20)
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where A is a general differential operator, B a boundary operator, f (r) a known analytical
function and Γ is the boundary of the domain Ω. According to the method, A is divided
into two parts which are L and N, where, L is linear operator and N is nonlinear. Therefore,
the Equation (19) can be rewritten as follows:

L(u) + N(u)− f(r) = 0, r ∈ Ω. (21)

Now the homotopy perturbation structure is shown as follows:

H(v, p)− (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0 (22)

where,
v(r, p) : Ω× [0, 1]→ R. (23)

In the Equation (22), p ∈ [0, 1] is an embedding parameter and u0 is the first approx-
imation that satisfies the boundary condition. We can assume that the solution of the
Equation (23) can be written as a power series in p, as follows:

v = v0 + pv1 + p2v2 + . . . (24)

and the best approximation for solution is given as

u = lim
p→1

v = v0 + v1 + v2 + . . . (25)

4. Solution of the Problem by HPM

In order to solve the nonlinear differential Equations (10), (11), (13) and (14) by HPM,
we constructed a homotopy as follows:

H( f , p) = (1− p)
(

f iv − f0
iv)+ p

[
(1 + N1) f iv − N1g′′ − Re( f f ′′′ − f ′ f ′′ )−M f ′

]
= 0 (26)

H(g, p) = (1− p)
(

g′′ − g′′0
)
+ p

[
N2g′′ + N1( f ′′ − 2g)− N3Re

(
f g′ − f ′g

)]
= 0 (27)

H(θ, p) = (1− p)
(
θ′′ − θ′′0

)
+ p

(
1 +

4
3

Nr

)
θ′′ + p

[
Peh
(

f ′θ − f θ′
)]

= 0 (28)

H(φ, p) = (1− p)
(
φ′′ − φ′′0

)
+ p

[
φ′′ + Pem

(
f ′φ− f φ′

)]
= 0 (29)

Now f , g, θ and φ can be explained as follows:

f = f0 + p f1 + p2 f2 + . . . (30)

g = g0 + pg1 + p2g2 + . . . (31)

θ = θ0 + pθ1 + p2θ2 + . . . (32)

φ = φ0 + pφ1 + p2φ2 + . . . (33)

Substituting Equations (30)–(33) into Equations (26)–(29) and simplifying and re-
arranging based on power of p-terms, we obtain:

for p0 :
f0

iv = 0, g′′0 = 0, θ′′0 = 0, φ′′0 = 0 (34)

and boundary conditions are:

η = −1 : f0 = −1, f0′ = g0 = θ0 = φ0 = 0
η = +1 : f0 = g0 = θ0 = φ0 = 1, f0′ = −1

}
(35)
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for p1 :
(1 + N1) f1

iv − N1g′′0 − Re( f0 f ′′0 ′ − f0′ f ′′0 )−M f0′ = 0
N2g′′1 + N1( f ′′0 − 2g0)− N3Re( f0g0′ − f0′g0) = 0(

1 + 4
3 Nr

)
θ′′1 + Peh( f0′θ0 − f0θ0′) = 0

φ′′1 + Pem( f0′φ0 − f0φ0′) = 0

 (36)

and boundary conditions are:

η = −1 : f1 = f1′ = g1 = θ1 = φ1 = 0
η = +1 : f1 = g1 = θ1 = φ1 = f1′ = 0

}
(37)

Solving Equations (34) and (36) with boundary conditions, we have

f0(η) = −0.75η3 − 0.25η2 + 1.75η + 0.25
g0 = 0.5η + 0.5
θ0 = 0.5η + 0.5
φ0 = 0.5η + 0.5

 (38)

f1(η) = − Re
1+N1

[0.0080357143]η7 − 0.00625
[

Re+M
1+N1

]
η6

−
[

Re
1+N1

(0.0020833333) + M
1+N1

(0.0041666667)
]
η5

+
[

Re
1+N1

(0.0260416667) + M
1+N1

(0.072916667)
]
η4

+
[

Re
1+N1

(0.360863095)− M
1+N1

(0.089453125)
]
η3

+
[

Re
1+N1

(0.360863095)− M
1+N1

(0.089453125)
]
η3

−
[

Re
1+N1

(0.03333333334) + M
1+N1

(0.209375)
]
η2

+ M
1+N1

(0.124609375)η
+[ M

1+N1
(0.11171875)− Re

1+N1
(0.041592261]

(39)

g1(η) =
N3Re

N2
(0.375)η5 + N3Re

N2
(0.1041666667)η4

+
[

N3Re
N2

(0.0416666667) + N1
N2

(0.9166666667)
]
η3

+
[

N1
N2

(0.75)− N3Re
N2

(0.375)
]
η2

−
[

N3Re
N2

(0.0761666667) + N1
N2

(0.9166666667)
]
η

+
[

N3Re
N2

(0.2708333333)− N1
N2

(0.75)
]

(40)

θ1(η) =
Peh

1+ 4
3 Nr

[
0.0375η5 + 0.1041666667η4 + 0.0416666667η3 − 0.375η2]

−
[

Peh
1+ 4

3 Nr
(0.0791666667)

]
η +

[
Peh

1+ 4
3 Nr

(0.2708333333)
] (41)

φ1(η) = Pem
[
0.0375η5 + 0.1041666667η4 + 0.0416666667η3 − 0.375η2]
−Pem(0.0791666667)η + Pem(0.2708333333)

(42)

The terms fi(η),gi(η),θi(η) and φi(η) for i ≥ 2 are too large to present graphically.
The solution of the Equations (30)–(33), where p = 1 will be as

f (η) = f0(η) + f1(η) + f2(η) + . . .
g(η) = g0(η) + g1(η) + g2(η) + . . .
θ(η) = θ0(η) + θ1(η) + θ2(η) + . . .
φ(η) = φ0(η) + φ1(η) + φ2(η) + . . .

 (43)
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5. Results and Discussions

The transformed Equations (10), (11), (13) and (14) along with the boundary conditions
(15) and (16) were solved numerically by the bvp4c routine in MATLAB and the results
thus obtained were developed into graphs in which the behaviour of non-dimensional
parameters like N1, N2, N2, Re, Peh, Pem etc. on the simulated fluid velocity, microrotation
profile and temperature profiles are shown through Figures 2–13.

Figures 2–4 depicts the effect of N1, N2 and N3 respectively on simulated velocity. As
in Figure 2 when η < −0.4545 velocity decreases and after that it start increasing and as
η > 0.4949 it again decreases. That is, N1 has a dual effect on simulated velocity while on
increasing N2 and N3, the simulated velocity decreases (see Figures 3 and 4).

Figure 2. Effect of N1 on simulated velocity.

Figure 3. Effect of N2 on simulated velocity.
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Figure 4. Effect of N3 on simulated velocity.

It can be seen in Figure 5 that keeping the other parameters fixed, when η < −0.6566
velocity decreases for Re < 2.0 and an increase in velocity is shown for Re > 2.0, it starts
decreasing when −0.6566 < η < 0.3535 and it start increasing when η > 0.3535. As the
Reynolds number increases, the fluid velocity decreases in the middle of the channel,
whereas near the lower wall of the channel it decreases when the Reynolds number remains
below 2.0; it starts increasing when the Reynolds number is above 2.0, but near the upper
wall of the channel, it appears to increase when the Reynolds number increases from 1.0
to 4.0.

Figure 5. Effect of Re on simulated velocity.
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Figure 6 portrays the effect of the magnetic field on simulated velocity. It increases as
M increases, but after reaching η = −0.05051, the velocity decreases. In the presence of the
magnetic field, the fluid oscillates irregularly in the middle of the channel.

Figure 7 shows that the micro-elements of the fluid irregularly oscillate around the
middle of the channel as N1 increases. As the coupling parameter gradually increases, it is
reflectedby the irregular oscillation of micro-elements around the middle of the channel.

Figure 6. Effect of M on simulated velocity.

Figure 7. Effect of N1 on microrotation profile.
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Figure 8 shows that with an increase in N2, micro-elements irregularly oscillate around
η < −0.5, that is, due to the increase of spin gradient viscosity, micro-elements oscillate in
an irregular mode near the lower wall of the channel.

An increase in N3 leads to the irregular oscillation of micro-elements around η < −0.3,
that is, the micro-elements oscillate near the lower wall of the channel as N3 increases
(Figure 9).

Figure 8. Effect of N2 on microrotation profile.

Figure 9. Effect of N3 on microrotation profile.
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Figure 10 demonstrates that the micro-elements irregularly oscillate near the lower
wall of the channel at around (−0.6, −0.4) as Reynolds number increases.

Figure 11 shows that the increase in the value of Nr leads to a decrease in the tempera-
ture field and that the maximum decrease in temperature is at the middle of the channel,
indicating that larger the radiation parameter lower the temperature in the middle of the
channel.

Figure 10. Effect of Re on microrotation profile.

Figure 11. Effect of Nr on temperature profile.
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In Figure 12, it can be observed that the fluid temperature increases in the middle of
the channel when Peh = 0.5 to Peh = 1.5, and the temperature rapidly increases when
Peh = 1.5 onwards.

Figure 13 shows the effect of Peclet number for the diffusion of mass in a concentration
profile. The solute concentration will be at a maximum in the middle of the channel as the
diffusion of mass increases but it remains non-zero at the upper wall of the channel.

Figure 12. Effect of Peh on temperature profile.

Figure 13. Effect of Pem on mass concentration profile.

6. Conclusions

The micropolar parameter N1 has a dual effect on simulated velocity while the spin
gradient viscosity parameter N2 and N3 both have an adverse effect on simulated velocity.

On increasing N1, the microrotation irregularly oscillates around the middle of the
channel, whereas on increasing spin gradient viscosity N2, micro-elements irregularly
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oscillate around η < −0.5;an increase in N3 leads to irregular oscillation at an angular
velocity around η < −0.3.

The Reynolds number impacts dual effect on simulated velocity about Re = 2.0 when
−1 < η < −0.6566 and increasing the Reynolds number leads to irregular oscillations in
microrotation.

The simulated velocity irregularly oscillates around η = −0.05051, when M increases.
Nr plays a key role in decreases in the temperature profile and the maximum fall in

temperature is noticed near middle of the channel.
The fluid temperature increases in the middle of the channel when Peh = 0.5 to

Peh = 1.5 and the temperature rapidly increases when Peh = 1.5 onwards; the upper
wall of the channel will experience increases in temperature but the lower wall will have
negligible increases in temperature.

Peclet number Pem for diffusion of mass indicates that mass diffusion will be at a
maximum in the middle of the channel.

From Table 1, it has been observed that local heat flux increases when M < 10 and starts
decreasing when M > 10, and inversely depends on Reynolds number. Its dependence on
N2 and N3 is inverse, while on N1 it is directly proportional. The heat flux increases when
the values of Peh increase, whereas it decreases when increasing the values of radiation
parameter Nr.

Table 1. Numerical values of −θ′(−1) and −ϕ′(−1) for different values of N1, N2, N3, Re,
M Peh, Pemand Nr.

N1 N2 N3 Re M Peh Pem Nr −θ′(−1)

1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5535
1.0 1.0 1.0 1.0 3.0 0.1 0.1 0.1 0.5536
1.0 1.0 1.0 1.0 5.0 0.1 0.1 0.1 0.5537
1.0 1.0 1.0 1.0 10.0 0.1 0.1 0.1 0.5537
1.0 1.0 1.0 1.0 15.0 0.1 0.1 0.1 0.5536
1.0 1.0 1.0 1.0 20.0 0.1 0.1 0.1 0.5535
1.0 1.0 1.0 3.0 1.0 0.1 0.1 0.1 0.5552
1.0 1.0 1.0 5.0 1.0 0.1 0.1 0.1 0.5538
1.0 1.0 1.0 10.0 1.0 0.1 0.1 0.1 0.5532
1.0 1.0 1.5 1.0 1.0 0.1 0.1 0.1 0.5532
1.0 1.0 1.6 1.0 1.0 0.1 0.1 0.1 0.5530
1.0 1.0 2.0 1.0 1.0 0.1 0.1 0.1 0.5520
1.0 1.5 1.0 1.0 1.0 0.1 0.1 0.1 0.5533
1.0 1.6 1.0 1.0 1.0 0.1 0.1 0.1 0.5532
1.0 2.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5530
1.5 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5537
1.6 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5538
2.0 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5539
1.0 1.0 1.0 1.0 1.0 0.2 0.1 0.1 0.6167
1.0 1.0 1.0 1.0 1.0 0.3 0.1 0.1 0.6922
1.0 1.0 1.0 1.0 1.0 0.4 0.1 0.1 0.7842
1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.2 0.5475
1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.3 0.5427
1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.4 0.5387

N1 N2 N3 Re M Peh Pem Nr −ϕ′(−1)

1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.5613
1.0 1.0 1.0 1.0 1.0 0.1 0.2 0.1 0.6355
1.0 1.0 1.0 1.0 1.0 0.1 0.3 0.1 0.7268
1.0 1.0 1.0 1.0 1.0 0.1 0.4 0.1 0.8420

Table 1 also predicts that the mass flux depends only on Pem and it starts increasing
upon increasing Pem.
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7. Comparison of This Work with Other Work

In the absence of the magnetic field and thermal radiation, the Equations (10), (13)
and (14) reduce equations obtained by M. Sheikholeslami et al. [24], but we have taken
different boundary conditions in our paper. If we take the same boundary conditions as
taken by [24], then the graphical representation of microrotation in our Figures 7–10 will be
reduced to the same as is shown in [24]. In the absence of the magnetic field and thermal
radiation, the governing equations of our problem have been reduced to the governing
equations as in A. Mirzaaghaian et al. [25], and if we take the boundary conditions to be
the same as in [25], the graphical representation of the temperature profile matches with
Figures 11 and 12 in our paper. Thus, in the presence of the magnetic field and thermal
radiation, we have obtained the new results presented in the Results and Discussion section
of this study.
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D* molecular diffusivity
K1 thermal conductivity
B0 strength of constant applied magnetic field
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Nomenclature 
C species concentration 
D* molecular diffusivity 𝐾ଵ thermal conductivity 𝐵 strength of constant applied magnetic field 
Ꞙ dimensionless stream function 
g dimensionless microrotation 
h half width of channel 
j micro-inertia density 
M magnetic parameter 
N microrotation/angular velocity 
N1, 2, 3 dimensionless parameters 𝑁௨௫ Local Nusselt number 𝑆௨௫ Local Sherwood number 
Sc Schmidt number 
P pressure 
Pr Prandtl number 𝑃 Peclet number for diffusion of heat 

dimensionless stream function
g dimensionless microrotation
h half width of channel
j micro-inertia density
M magnetic parameter
N microrotation/angular velocity
N1, 2, 3 dimensionless parameters
Nux Local Nusselt number
Sux Local Sherwood number
Sc Schmidt number
P pressure
Pr Prandtl number
Peh Peclet number for diffusion of heat
Pem Peclet number for diffusion of mass
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qr radiative heat flux
Re Reynolds number
T fluid temperature
Nr radiation parameter
s microrotation boundary condition
(u, v) Cartesian velocity components
(x, y) Cartesian coordinate components parallel & normal to channel axis, respectively
HPM homotopy perturbation method

Greek Symbols
η similarity variable
µ dynamic viscosity
ρ Fluid density
ψ stream function
σ electric conductivity
θ dimensionless temperature
φ dimensionless mass transfer parameter
κ coupling coefficient
νs microrotation/spin-gradient viscosity
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