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Abstract: MnO-Co@C nanospheres were fabricated by in situ polymerizing and high-temperature
carbonizing processes. This unique synthesis method does not require any template or reducing gas.
The synthesized multicore-shell structure has a shell of about 500 nm and multiple nuclei of several
tens of nanometers. Subsequently, extensive experiments were conducted to adjust the material
composition of the nanospheres by adjusting the amount of resorcinol and formaldehyde. The results
showed that the obtained material performed best when resorcinol and formaldehyde were added to
0.2 g MnCo2O4 at 0.3 g and 0.42 mL, respectively. The efficient absorption bandwidth (EAB) value
reaches 3.3 GHz when the absorber thickness is 3 mm. The reflection loss (RL) is up to−23.8 dB when
the frequency is at 8.6 GHz. The unique yolk core-shell structure gives the material a heterogeneous
interface, and the enhanced interfacial polarization loss causes the enhanced dielectric loss. The
carbon layer with microporosity also causes conduction loss and multiple reflections. The composite
structure formed by metallic Co, MnO, and carbon has better impedance matching and improved
microwave absorption capability.

Keywords: MnO-Co@C nanospheres; yolk core-shell; microwave absorption

1. Introduction

At present, microwave absorbing materials (MAMs) are widely used in military and
civil fields, such as stealth defense systems of aircraft, electromagnetic interference pre-
vention, etc. [1–3]. Simple methods to manufacture high-performance MAMs have been
a hot subject for decades. Studies have shown that a material’s microwave absorbing
performance (MAP) can be boosted by combining materials with dissipation and magnetic
loss properties [4,5]. Researchers have identified a variety of microwave absorbing ma-
terials with good single loss mechanisms, such as single metals, alloys, carbon materials,
conductive polymers with good properties, etc. However, these materials have a few
drawbacks, including high density, complicated production processes, poor thermostability,
and ease of oxidizing in air, and these drawbacks limit their applications. [6]. Among a
variety of magnetic MAMs, Co has a more excellent absorption capability due to its large
anisotropic field, high saturating strength of magnetization strength, and high-frequency
Snoek’s limit, but the absorption bandwidth is narrow due to eddy current loss, impedance
mismatch, and lack of dielectric loss. Additionally, in the past few years, manganese
oxides have been widely studied in several fields due to their low cost and abundant
resources [7], such as Fe/MnO@C composites [8] and Co/MnO composites [9], which show
excellent electromagnetic MAPs due to the extended electromagnetic microwave path and
polarization loss.
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In order to obtain outstanding MAPs, two or more composite materials can be used
together to regulate electromagnetic parameters and impedance matching. For example,
carbon-containing materials (carbon fibers, porous carbon nanospheres, carbon-based nan-
otubes etc.) [10–12] have been used in combination with other metal cations. For example,
Zhou et al. prepared metal-organic framework (MOF)-derived porous metal/C composites
(rod-like Co/ZnO/C composites) [13]. Such methods can achieve better electromagnetic
MAPs. Multi-component absorbers consistently exhibit a wider range of microwave absorp-
tion spectra and stronger reflection loss (RL) than single-type absorbers [14]. In addition
to the inter-matching between magnetic and dielectric elements, microstructure greatly
influences the MAPs of composites. The core-shell structure of MAMs has recently received
much attention. Such unique multilayer microstructures not only provide a significant
benefit to microwave absorption due to their multilayer polarization, multiple reflections
with microporous interfaces, and cooperative behavior, but also produce a high degree of
chemical homogeneity by preventing the agglomeration of metal particles, making compos-
ite materials much more effective than single-component absorbers [15,16]. Liu et al. [17]
successfully prepared core-shell Fe3O4@C. They found that a metal oxide surface coated
with a carbon layer could improve the complex dielectric constant and the characteristic
impedance matching, which significantly enhancing microwave absorption. Therefore,
we infer that the yolk-shell microspheres combining dielectric carbon shells and magnetic
MnO-Co cores can produce multiple reflective losses. This is due to the effective gap
between magnetic and dielectric elements, and the impedance match allows the complex
permittivity and permeability of the materials to be elevated.

Herein, we introduce a facile one-pot method to produce yolk core-shell structure
MnO-Co@C nanospheres via in-situ reduction. The thickness of the carbon shell could be
managed by regulating the volume of resorcinol and formaldehyde. The research revealed
that the carbon shell can inhibit the agglomeration of MnO-Co nanospheres and adjust the
complex dielectric constant of the material so that MnO-Co@C nanospheres have a stronger
magnetic loss capability. The resistance matching of the material is improved, and the
MAPs of the material are enhanced. These results may provide new ideas for improving
conventional MAMs.

2. Experimental Section
2.1. Chemicals

All chemicals are for straight use (analytical grade drugs). Manganese acetate tetrahy-
drate (Mn(CH3COO)2·4H2O), cobalt acetate tetrahydrate (Co(CH3COO)2·4H2O),
polyvinylpyrrolidone (PVP), ethylene glycol ((CH2OH)2), resorcinol, ethanol (C2H6OH),
formaldehyde (37%) and ammonia (NH3·H2O, 26%) were purchased from Sinopharm
Chemical Reagent, Co., Ltd. (Shenyang, Liaoning, China). The water used throughout the
experiment was deionized water.

2.2. The Preparation of MnCo2O4 Nanospheres

The preparation process of MnCo2O4 nanospheres is described in [18]. Briefly, 3.0 g of
PVP was dissolved in 250 mL of (CH2OH)2 and agitated for one hour. Next, 2.5 mmol of
Mn(CH3COO)2·4H2O and 5.0 mmol of Co(CH3COO)2·4H2O were dissolved in the solution
and stirred for one hour. The mixed solution was then transferred to a 500 mL round
bottom flask, heated at 160 ◦C for 5 h, and naturally chilled to room temperature. Then,
the reaction was centrifuged (8000 rpm), cleaned with ethanol, and dried in an oven at
80 ◦C for 12 h. The reaction was heated to 400 ◦C at 0.5 ◦C/min and held for 2 h to obtain
MnCo2O4 nanospheres.

2.3. The Preparation of Core-Shell MnO-Co@C Nanospheres

Core-shell MnO-Co@C nanospheres were generated by a classical in situ polymer-
ization and high-temperature carbonization method [19,20]. In short, 0.3 g of synthesized
MnCo2O4 material was dispersed in a mixing solution that included 32 mL C2H6OH, 80 mL
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deionized water, and 0.4 mL NH3·H2O. This solution was sonicated for 30 min and then
magnetic stirred for 15 min. Resorcinol was added, the solution was stirred for 30 min, and
then the formaldehyde was added. Next, the solution was agitated at room condition for
12 h, washed with deionized water and ethanol, and dried to obtain MnCo2O4@phenolic
resin, which was transferred to a tube furnace and held for 3 h under argon protective gas
using 1 ◦C/min ramp to 750 ◦C. Three samples were produced in this way, using different
amounts of resorcinol and formaldehyde. The samples were labeled MnO-Co@C-0.2, MnO-
Co@C-0.3, and MnO-Co@C-0.4, and the addition amounts of resorcinol and formaldehyde
for the three samples were 0.2 and 0.28, 0.3 and 0.42, and 0.4 and 0.56, respectively.

2.4. Characterization

A characterization of the constituent phases and the crystal structure of the samples
was carried out by X-ray powder diffraction (XRD; smartlab9, Rigaku, Tokyo, Japan, Cu-Kα

source (40 kV, 200 mA)). The surface appearance and dimensional information of the mate-
rial were assessed by scanning electron microscopy (SEM; JSM-7001F, JEOL, Tokyo, Japan).
The element distribution inside the material and the internal morphology was observed by
transmission electron microscopy (TEM; JEM-2100F, JEOL, Tokyo, Japan). X-ray photoelec-
tron spectroscopy (XPS) was used to analyze the chemical bonding states of the elements on
the material surfaces, using an Axis Supra with an Al Kα X-ray source. A vector network
analysis (VNA; ENA-E5080B, Keysight, Colorado Springs, CO, USA) was used to measure
the related factors of the absorbing material in the frequency series 2–18 GHz and used
to calculate the reflection loss magnitude. The product was homogeneously mixed with
paraffin wax in a mass ratio of 3:7 and pressed into a ring sample with an outside diameter
of 7 mm, an inside diameter of 3 mm, and a depth of roughly 3 mm.

3. Results and Discission

The composition procedure of the core-shell MnO-Co@C nanospheres is shown in
Figure 1. Mesoporous MnCo2O4 nanospheres with a mean diameter of approximately 500 nm
were synthesized by a polyvinylpyrrolidone (PVP)-assisted solvothermal method. Then
resorcinol and formaldehyde were used to form a layer of phenolic resin developed on the
interface of MnCo2O4. Finally, the precursor material is carbonized and reverted in a high-
temperature shielding atmosphere to obtain multinuclear yolk-shell MnO-Co@C structures.
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Figure 1. Schematic illustration of the composite process for core-shell MnO-Co@C nanospheres.

Figure 2 shows the morphology of MnCo2O4 nanospheres and MnO-Co@C nanospheres.
Figure 3a shows that the average size of the diameter of the prepared MnCo2O4 nanospheres
is about 500 nm, and the shrinkage shape of the nanoparticles becomes irregularly wrapped
inside the carbon layer after in situ polymerization and calcination at 750 ◦C. Combined
with the XRD figure, it can be known that the internal nanoparticles were reduced to MnO-
Co, and a small agglomeration of MnO-Co@C nanospheres occurred with the increase of
the carbon amount. The TEM shows that the small metal nanoparticles are amorphously
distributed inside the carbon layer, and the carbon layer is uneven and microporous, thus
increasing the multiple reflections of the material and providing reflection channels.
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Figure 2. SEM images of MnCo2O4 (a), MnO-Co@C-0.2 (b), MnO-Co@C-0.3 (c), and MnO-Co@C-
0.4 (d). TEM images of MnO-Co@C-0.3 (e), and elemental mapping distribution of MnO-Co@C-0.3 (f).

Figure 3a shows the XRD results of MnO-Co@C-0.2, MnO-Co@C-0.3 and MnO-Co@C-
0.4. The diffraction peaks at 44.2◦, 51.5◦, and 75.8◦ for all the samples matches the (111),
(200) and (220) planes of fcc Co (JCPDS 15-0806). The diffraction peaks at 35◦, 40.7◦, 58.9◦,
70.4◦, and 74◦ all match the (111), (200), (220), (311), (222) planes of MnO (JCPDS 75-0626).
It was demonstrated that carbonizing at 750 ◦C is sufficient to help the carbon to fully
reduce the cobalt metal, while the MnO was not reduced [7,21]. It can be seen from the
intensity of the peaks that the content of Co is higher than that of MnO. As we can see,
with the increase of carbon content, the intensity of peaks of Co and MnO do not show
significant differences. In the sense, we assume that the metallic Co can be easily reduced
leaving the MnO dispersed around the Co and carbon shell, giving rise to the formation
of multiple interfaces within this unique core-shell structure. Consequently, the presence
of metallic Co and MnO increases the interfacial species of the core-shell structure. No
significant characteristic peaks of impurities were found in all XRD plots, indicating the
high purity of the prepared samples.



Coatings 2022, 12, 1405 5 of 11

Coatings 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

of metallic Co and MnO increases the interfacial species of the core-shell structure. No 
significant characteristic peaks of impurities were found in all XRD plots, indicating the 
high purity of the prepared samples. 

 

 
Figure 3. (a) The XRD pattern of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4, (b) hyste-
resis loops of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4. 

The hysteresis lines of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4 are 
shown in Figure 3b. According to these M-H curves, we can see that the saturation mag-
netization strength of the samples are 87.113 emu/g, 52.487 emu/g, and 50.746 emu/g, re-
spectively. As you may observe from the graph, the material’s saturation magnetization 
strength decreases steadily with the addition of carbon content. For ferromagnetic MAMs, 
the initial magnetic permeability (µi) can be expressed as [22]: 𝜇  =  𝑀௦ଶ𝑎𝑘𝐻𝑀௦  +  𝑏𝜆𝜉 (1)

Figure 3. (a) The XRD pattern of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4, (b) hysteresis
loops of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4.

The hysteresis lines of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4 are
shown in Figure 3b. According to these M-H curves, we can see that the saturation
magnetization strength of the samples are 87.113 emu/g, 52.487 emu/g, and 50.746 emu/g,
respectively. As you may observe from the graph, the material’s saturation magnetization
strength decreases steadily with the addition of carbon content. For ferromagnetic MAMs,
the initial magnetic permeability (µi) can be expressed as [22]:

µi =
M2

s
akHc Ms + bλξ

(1)

where a and b are two constants determined by the material composition, Ms is the satura-
tion magnetization strength, Hc is the coercivity, λ is the magnetostriction constant, and ξ
is the elastic strain parameter of the crystal. An increase in the magnetic powder µi usually
implies an increase in the magnetic loss potential, and the high Ms and low Hc also favor
an increase in the magnetic loss potential.
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The surface chemical composition and valence states of MnO-Co@C ternary nanocom-
posites were detected by X-ray photoelectron spectroscopy (XPS), and we can observe from
Figure 4 that MnO-Co@C-0.3 has four characteristic peaks belonging to C 1s, O 1s, Co
2p, and Mn 2p, respectively. The characteristic peaks can be seen in the high-resolution
spectra of C 1s at 283.8eV, 285eV, and 288.4eV, respectively, attributable to C=C, C-O, and
O=C-C [23,24]. Co 2p can be adapted to 6 different feature peaks. The characteristic peaks
at 779.2 eV and 794.6 eV belong to metallic Co, the feature peaks at 780.6 and 796.3 eV match
the Co-O bond, and the remaining feature peaks at 786.8 eV and 803 eV can correspond
to the satellite peaks [24]. Mn 2p can be fitted as 2 distinct feature peaks at 652.5 eV and
640.5 eV belonging to Mn2+ [25].
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The reflection loss (RL) associated with the complex permittivity (εr = ε′ − jε′′) and
permeability (µr = µ′ − jµ′′) was measured in the range of 2–18 GHz to evaluate the MAPs
of the composite, based on the transmission line theory [26]:

Zin = Z0
√

µr/εr tan h
∣∣∣∣j(2π f d

c

)
√

εrµr

∣∣∣∣ (2)

RL(dB) = 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (3)
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where Zin is the input resistance of the absorbers, Z0 is the free space resistance, c is the
velocity of light, and d is the thickening of the absorbers. The real part (ε′, µ′) indicates the
storage capacity of microwave energy, and the imaginary part (ε′′, µ′′) indicates the ability
to dissipate electromagnetic microwaves.

Figure 5a displays ε′ values of MnO-Co@C-0.2, MnO-Co@C-0.3, and MnO-Co@C-0.4
in the frequency range of 2–18 GHz. We can observe that the value of MnO-Co@C-0.3 and
MnO-Co@C-0.4 are relatively close and fall slightly in the range of 2–16 GHz. The ε′ value
of MnO-Co@C-0.2 is approximately 5.5 and remains almost unchanged. On the ground
of free electron theory, it is proposed that the imaginary part of the complex permittivity
can be redefined as ε′′ ≈ 1/2πρfε0 [27], where ρ is the resistivity and ε0 is the free space
permittivity. It is known that the value of ε′′ is influenced by the conductivity, and the
larger the conductivity, the larger the value of ε′′. The gradual increase in the ε′′ values of
the samples may be owing to the high cobalt metal content, and the graphitization of the
material with the addition of resorcinol and formaldehyde. The dielectric tangent loss factor
(tan δε = ε′′/ε′) [28] is used to express the dielectric loss capability of the material. We can
find that the value of tan δε for MnO-Co@C-0.3 and MnO-Co@C-0.4 increases relative to the
value of MnO-Co@C-0.2, fluctuating around 0.4, indicating that the dielectric loss capability
of MnO-Co@C-0.3 and MnO-Co@C-0.4 is more significant than that of MnO-Co@C-0.2. We
can observe from Figure 5c,d that the values of µ′ and µ′′ of all the three samples do not
vary much, and the values are close to each other, with the value of µ′ fluctuating around 1
and µ′′ around 0. Similarly, the tan δµ = µ′′/µ′ [28] does not show much difference. It is
possible to assume that the magnetic properties of the samples are not strong. The magnetic
loss comes from the hysteresis, category wall resonance, ferromagnetic resonance, and
eddy currents effects [29]. Hysteresis losses are insignificant in weaker electric fields, and
domain wall resonance losses usually occur in lower frequencies (MHz) [30]. Therefore,
the natural ferromagnetic resonance and eddy currents effects are commonly considered
the major loss mechanisms of ferromagnetic absorbers at higher frequencies (GHz). The
eddy current losses can be stated as [31]:

µ′′ = 2πµ0
(
µ′
)2
σd2 f /3 (4)

where σ is the electrical conductivity and µ0 is the magnetic conductivity in the presence of
vacuum. The reflection loss is caused by the eddy current effect. C0 = µ′′ (µ′)−2 f−1 When
the frequency changes, C0 is a constant, indicating the existence of eddy current loss in the
material [32].

The ability of a material to dissipate electromagnetic energy can be quantified by the
attenuation coefficient α, expressed by the formula [21]:

α =

(√
2π f
c

)√
µr ′′ εr ′′ − µr ′εr ′ +

√
(µr ′′ εr ′′ − µr ′εr ′)

2 + (µr ′′ εr ′ − µr ′εr ′′ )
2 (5)

From Figure 5h, it can be obtained that the α values of MnO-Co@C-0.2, MnO-Co@C-0.3,
and MnO-Co@C-0.4 increase with the growth of frequency, and the values of Mno-Co@C-0.3
and MnO-Co@C-0.4 are higher than MnO-Co@C-0.2. It indicates that the electromagnetic
dissipation capability of MnO-Co@C-0.3 and MnO-Co@C-0.4 is higher in the region of
2–18 GHz.

According to Equations (2) and (3), the correlation between the thickness of the relevant
EMW absorbing material and the reflection loss (RL) in the spectrum of frequencies from
2–18 GHz can be calculated. Figure 6 illustrates the reflection loss of MnO-Co@C-0.2,
MnO-Co@C-0.3, and MnO-Co@C-0.4 corresponding to the frequency and thickness in the
spectrum of frequencies region of 2–18 GHz. We can obtain from the Figure 6a that the
MnO-Co@C-0.2 absorption effect is inferior. When the absorber’s thickness is 1–5 mm,
and the microwave frequency is 2–18 GHz, no RL value reaches the effective value of
−10 dB (absorption of 90% of electromagnetic microwaves). As the amount of resorcinol
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and formaldehyde increases, the carbon layer becomes thicker and has a good reduction
effect on the alloy. The MAPs of MnO-Co@C-0.3 and MnO-Co@C-0.4 are much better than
MnO-Co@C-0.2. For MnO-Co@C-0.3, when the absorber thickness is about 3 mm, the
EABmax value reaches 3.3 GHz and the RLmin is −23.8 dB. The addition of resorcinol and
formaldehyde further increases the absorbing effect of the materials. Thus, we reasoned
that MnO-Co@C-0.3 has the best ratio. We can infer that as the carbon content increases,
the amount of Co being reduced gradually increases, the non-homogeneous MnO-Co@C
interface gradually increases, and the interfacial polarization is enhanced. As the carbon
layer has a large number of dipoles, polarization loss is generated, which increases the
dielectric loss of the material. The exchange resonance leads to an increase in magnetic
loss, which promotes a good impedance match and increases the overall MAPs of the
material. However, further increases of carbon content will not help much, as MnO-
Co@C-0.4 did not perform better. The above results show that the spherical yolk core-
shell MnO-Co@C material with a reasonable carbon content ratio can achieve broadband
EMW absorption with good overall performance. This excellent microwave absorption
performance originates from the impedance matching of the composite; the cooperation
between dielectric losses and magnetic losses.
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4. Conclusions

In conclusion, a novel metal-metal oxide-carbon material interface was designed
to form a special yolk core-shell structure. The spherical yolk core-shell MnO-Co@C
material exhibits good EMW absorption performance and achieves the best reflection loss
value of −23.8 dB and the EABmax reaches 3.3 GHz when the surface thickness is 3 mm.
Both of the dielectric and magnetic losses, and the unique yolk core-shell structure, all
contribute significantly to the material’s excellent microwave absorption. Core-shell MnO-
Co@C nanospheres have the advantages of a simple preparation method, enhanced wave
absorption performance, wide absorption bandwidth, and low density, making them a
great application prospect in microwave absorption.
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