Macroparticle Reduction and Its Transport Mechanism through a Magnetic Filter during Cathodic Vacuum Arc Deposition with an HEA Target
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of the Magnetic Field and Working Pressure on the Filter Duct
3.2. Effects of Different Inner Wall Structures and the Reduced Cross Section of the Duct on the MP Density
3.3. Relationship between MP Density and Plasma Density Distributions
4. Discussion
4.1. Transport Mechanism of MPs in the Filter Duct
4.2. The Merits of Using a Smaller Passage in the Midway of the Duct
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanders, D.M.; Boercker, D.B.; Falabella, S. Coating technology based on the vacuum arc-a review. IEEE Trans. Plasma Sci. 1990, 18, 883–894. [Google Scholar] [CrossRef]
- Swift, P. Macroparticles in films deposited by steered cathodic arc. J. Phys. D Appl. Phys. 1996, 29, 2025. [Google Scholar] [CrossRef]
- Tai, C.; Koh, E.; Akari, K. Macroparticles on TiN films prepared by the arc ion plating process. Surf. Coat. Technol. 1990, 43, 324–335. [Google Scholar] [CrossRef]
- Ali, M.; Hamzah, E.; Abbas, T.; Mohd Radzi, H.J.; Mohd, T.; Qazi, I.A. Macrodroplet reduction and growth mechanisms in cathodic arc physical vapor deposition of tin films. Surf. Rev. Lett. 2008, 15, 653–659. [Google Scholar] [CrossRef]
- Anders, S.; Anders, A.; Brown, I. Macroparticle-free thin films produced by an efficient vacuum arc deposition technique. J. Appl. Phys. 1993, 74, 4239–4241. [Google Scholar] [CrossRef]
- Miernik, K.; Walkowicz, J.; Bujak, J. Design and performance of the microdroplet filtering system used in cathodic arc coating deposition. Plasmas Ions 2000, 3, 41–51. [Google Scholar] [CrossRef]
- Boxman, R.L.; Zhitomirsky, V.; Alterkop, B.; Gidalevich, E.; Beilis, I.; Keidar, M.; Goldsmith, S. Recent progress in filtered vacuum arc deposition. Surf. Coat. Technol. 1996, 86, 243–253. [Google Scholar] [CrossRef]
- Aksenov, I.I.; Strel’Nitskij, V.E.; Vasilyev, V.V.; Zaleskij, D.Y. Efficiency of magnetic plasma filters. Surf. Coat. Technol. 2003, 163, 118–127. [Google Scholar] [CrossRef]
- Boxman, R.L.; Goldsmith, S.; Ben-Shalom, A.; Kaplan, L.; Arbilly, D.; Gidalevich, E.; Zhitomirsky, V.; Ishaya, A.; Keidar, M. Filtered vacuum arc deposition of semiconductor thin films. IEEE Trans. Plasma Sci. 1995, 23, 939–944. [Google Scholar] [CrossRef]
- Keidar, M.; Beilis, I.I.; Aharonov, R.; Arbilly, D.; Boxman, R.L.; Goldsmith, S. Macroparticle distribution in a quarter-torus plasma duct of a filtered vacuum arc deposition system. J. Phys. D-Appl. Phys. 1997, 30, 2972–2978. [Google Scholar] [CrossRef]
- Keidar, M.; Beilis, I.I.; Boxman, R.L.; Goldsmith, S. Transport of macroparticles in magnetized plasma ducts. IEEE Trans. Plasma Sci. 1996, 24, 226–234. [Google Scholar] [CrossRef]
- Chen, T.K.; Shun, T.T.; Yeh, J.W.; Wong, M.S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188, 193–200. [Google Scholar] [CrossRef]
- Lindfors, P.A.; Mularie, W.M.; Wehner, G.K. Cathodic arc deposition technology. Surf. Coat. Technol. 1986, 29, 275–290. [Google Scholar] [CrossRef]
- Randhawa, H. Cathodic arc plasma deposition technology. Thin Solid Film. 1988, 167, 175–186. [Google Scholar] [CrossRef]
- Randhawa, H.; Johnson, P. A review of cathodic arc plasma deposition processes and their applications. Surf. Coat. Technol. 1987, 31, 303–318. [Google Scholar] [CrossRef]
- Feng, X.; Tang, G.; Sun, M.; Ma, X.; Wang, L.; Yukimura, K. Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films. Surf. Coat. Technol. 2013, 228, S424–S427. [Google Scholar] [CrossRef]
- Chen, Y.; Munroe, P.; Xie, Z.; Zhang, S. High-entropy alloy-based coatings: Microstructures and properties. In Protective Thin Coatings Technology; CRC Press: Boca Raton, FL, USA, 2021; pp. 205–232. [Google Scholar]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Sha, C.; Zhou, Z.; Xie, Z.; Munroe, P. High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surf. Coat. Technol. 2020, 385, 125435. [Google Scholar] [CrossRef]
- Chang, H.W.; Huang, P.K.; Yeh, J.W.; Davison, A.; Tsau, C.H.; Yang, C.C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi) N coatings. Surf. Coat. Technol. 2008, 202, 3360–3366. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, S.J.; Yeh, J.W.; Chang, S.Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, S.J.; Yeh, J.W.; Davison, A. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings. J. Phys. D Appl. Phys. 2006, 39, 4628. [Google Scholar] [CrossRef]
- Lai, C.H.; Cheng, K.H.; Lin, S.J.; Yeh, J.W. Mechanical and tribological properties of multi-element (AlCrTaTiZr) N coatings. Surf. Coat. Technol. 2008, 202, 3732–3738. [Google Scholar] [CrossRef]
- Feng, X.; Tang, G.; Ma, X.; Sun, M.; Wang, L. Characteristics of multi-element (ZrTaNbTiW) N films prepared by magnetron sputtering and plasma based ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 301, 29–35. [Google Scholar] [CrossRef]
- Sha, C.; Zhou, Z.; Xie, Z.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci. 2020, 507, 145101. [Google Scholar] [CrossRef]
- Jhong, Y.-S.; Huang, C.-W.; Lin, S.-J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr) Cx coatings. Mater. Chem. Phys. 2018, 210, 348–352. [Google Scholar] [CrossRef]
- Braic, M.; Braic, V.; Balaceanu, M.; Zoita, C.N.; Vladescu, A.; Grigore, E. Characteristics of (TiAlCrNbY) C films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2010, 204, 12–13. [Google Scholar] [CrossRef]
- Čekada, M.; Panjan, P.; Drnovšek, A.; Panjan, M.; Gselman, P. Growth defects in pvd hard coatings. In Recent Advances in Thin Films; Kumar, S., Aswal, D.K., Eds.; Springer: Singapore, 2020; pp. 35–73. [Google Scholar]
- Bilek, M.M.M.; Martin, P.J.; McKenzie, D.R. Influence of gas pressure and cathode composition on ion energy distributions in filtered cathodic vacuum arcs. J. Appl. Phys. 1998, 83, 2965–2970. [Google Scholar] [CrossRef] [Green Version]
Working Pressure (mtorr) | Deposition Rate (nm/min) | Substrate Current (A) |
---|---|---|
5 | 28.5 | 1.8 |
10 | 22.1 | 0.6 |
20 | 9.7 | 0.3 |
Cross-Section Area of Filter Duct (cm2) | Area Fraction of MPs (%) | Deposition Rate (nm/min) | Substrate Current (A) |
---|---|---|---|
227 | 4.8 | 28.5 | 1.8 |
64 | 0.6 | 18.8 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-E.; Tu, Y.-K.; Tsai, M.-H.; Tsai, C.-W.; Yeh, J.-W. Macroparticle Reduction and Its Transport Mechanism through a Magnetic Filter during Cathodic Vacuum Arc Deposition with an HEA Target. Coatings 2022, 12, 1437. https://doi.org/10.3390/coatings12101437
Lee P-E, Tu Y-K, Tsai M-H, Tsai C-W, Yeh J-W. Macroparticle Reduction and Its Transport Mechanism through a Magnetic Filter during Cathodic Vacuum Arc Deposition with an HEA Target. Coatings. 2022; 12(10):1437. https://doi.org/10.3390/coatings12101437
Chicago/Turabian StyleLee, Pei-En, Yu-Kuan Tu, Ming-Hung Tsai, Che-Wei Tsai, and Jien-Wei Yeh. 2022. "Macroparticle Reduction and Its Transport Mechanism through a Magnetic Filter during Cathodic Vacuum Arc Deposition with an HEA Target" Coatings 12, no. 10: 1437. https://doi.org/10.3390/coatings12101437
APA StyleLee, P. -E., Tu, Y. -K., Tsai, M. -H., Tsai, C. -W., & Yeh, J. -W. (2022). Macroparticle Reduction and Its Transport Mechanism through a Magnetic Filter during Cathodic Vacuum Arc Deposition with an HEA Target. Coatings, 12(10), 1437. https://doi.org/10.3390/coatings12101437