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Abstract: This work aims to reveal the effects of 3D roughness parameters of sandblasted surfaces
on bond strength between thermal spray coatings and substrates. The investigation was carried
out on the surface of AISI 4140, which were pretreated with automatic-sandblasting system. 3D
topography and roughness parameters were analyzed by a 3D optical profiler. The bond strength
of WC-12Co coatings was measured using a pull-off test method. Scanning electron microscope
revealed that the morphology of the surface after sandblasting was rough. Furthermore, the surface
topography was characterized by several irregular peaks and pits with different directions and
no fixed orientation randomly distributed on sandblasted surface. The average values for surface
roughness Sa = 4.84 ± 0.34 µm and bond strength = 32.8 ± 2.8 MPa were obtained. In terms of 3D
roughness parameters, Sa, Sdr, Sdq and Sq were found to have more significant impact on affecting
the bond strength, showing a nonlinear regression relationship. Furthermore, bond strength was
positively correlated with Sa, Sdr and Sdq, while inversely proportional to Sq. This confirmed that a
greater surface roughness of a sandblasted surface was not more conducive to the improvement of
bond strength. The influence mechanism of each parameter was discussed, which was consistent
with the regression mathematical model.

Keywords: sandblasting pretreatment; 3D roughness parameters; bond strength; nonlinear regression
analysis; surface morphology; thermal spraying coating

1. Introduction

The bond strength (BS) between coatings and substrates is an important property to
evaluate the quality of thermal spray coatings (TSCs), and directly affects the service per-
formance of TSCs, such as corrosion resistance [1], wear resistance [2] and bending fatigue
resistance [3]. The bonding mechanism between TSCs and substrates can generally be
classified into three categories, including mechanical bonding, physical bonding (generated
when substrate surface is very clean or activated) and metallurgical bonding (generated
when exothermic reaction occurs or particle temperature is very high), in which mechanical
bonding plays a leading role. Mechanical bonding mainly results from the fact that the
TSC shrinks and bites the convex points on the pretreated surface of a substrate during
rapid condensation. Therefore, the morphology characteristics of the pretreated surface
significantly affect the bonding property of TSCs [4]. At present, many types of technologies
have been employed for pretreating surfaces of the components to be sprayed, such as
water jet [5,6], sandblasting [7,8], laser surface texture technology [9,10] and turning [11],
etc. Among them, the sandblasting process, as a conventional pretreatment process, has
the advantages of simple processing steps, high efficiency and low cost. Therefore, the
sandblasting process is extensively used in engineering applications.
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Sandblasting process parameters, including sandblasting distance, sandblasting pres-
sure, sandblasting time and sandblasting angle, etc., are normally adjusted to improve
bonding properties, such as enhancing BS, reducing porosity and cracking resistance. The
optimization of sandblasting parameters has attracted the attentions of many researchers.
Asl, S.K. et al. [12] sandblasted an AISI 4130 steel with Al2O3 particles and measured the
mean roughness (Ra) of the surfaces. The results showed that a 90◦ blasting angle gave
slightly higher Ra = 8.65 µm in comparison with the results obtained for a blasting angle of
45◦ (Ra = 7.93 µm). Staia, M.H. et al. [13] found that as the sandblasting pressure changed
from 0.345 to 0.621 MPa, the average surface roughness Ra ranged from 9.74 to 12.57 mm,
and the maximum BS increased considerably from 32.7 to 52.5 MPa. Day, J. et al. [14] stud-
ied the correlation of the following factors such as grit size (20, 36, 54), blasting pressure
(20, 35, 50 psi), blasting time (4, 6, 8 passes), blasting distance (4, 6 in.), and blasting angle
(45◦,90◦) with the BS. Finally, they found that the linear regression equation can predict
precisely of the BS values and roughness Rz using the process parameters. In addition,
sand particles of copper [15], white alumina [16], steel shot [17], HG40 [18] could produce
sandblasted surfaces with different roughness levels, thereby obtaining TSCs with different
bonding properties.

In summary, the sandblasting process parameters can affect the BS of TSCs by prepar-
ing the substrate with different surface roughness. However, using the same sandblasting
process parameters to blast substrates with different materials will lead to different sand-
blasted surface morphology. In other words, the surface morphology and roughness of
the substrate after being sandblasted not only depend on the sandblasting process param-
eters, but also have a great relationship with the type of substrate materials. Therefore,
the research of process parameters can only focus on a specific matrix material, and the
research results are not universal, which cannot directly guide the sandblasting process
development of other materials. In recent years, surface morphology analysis techniques
have been increasingly employed in surface quality evaluation of sandblasted surfaces [19].
As important parameters of surface characteristics of the substrate, line roughness parame-
ters are often used to analyze the coarsening degree of the surface after being sandblasted,
which are also named as 2D roughness parameters and defined in ISO 4287. The following
2D roughness parameters are widely used [20].

− Rz, sum of height of the largest profile peak height and the largest profile valley depth
within a sampling length.

− Ra, arithmetic mean of the absolute ordinate values within a sampling length.
− Rq, root mean square value of the ordinate values within a sampling length.
− RSk, quotient of the mean cube value of the ordinate values Z(x) and the cube of Rq,

respectively, within a sampling length.
− Rp, largest profile peak height within a sampling length.
− Rku, quotient of the mean quadratic value of Z(x) and the fourth power of Rq within a

sampling length.

It has been generally confirmed that different linear roughness parameters result in
different BS of TSCs [18,21]. Using different preparation methods such as milling, waterjet
cutting, grit blasting with coarse and fine alumina of size 520–550 mm and 100 mm to
prepare the samples and obtained the surface with different linear roughness parameters,
the coatings prepared on the different surface showed that high linear roughness resulted
in poor wear resistance [22], high porosity [23], but the hardness was independent of
the substrate roughness [24]. Paredes, R.S.C. et al. [25] studied the variation of coating
roughness with different sandblasted substrate surfaces. They found that the reduction
of substrate roughness leading to smoother coating surfaces, which was a great benefit
to the post processing. In addition, substrate surface roughness affected the particle
deformation process during impact with the maximum high equivalent plastic strain
achieved are 4.5, 3.7, 5.4 and 2.2 for impact simulated on flat, inclined, peak and valley
surfaces, respectively [26]. Due to the larger and smaller line surface roughness, the
spherical droplets were flattened out to form disc and splash splats, which were more
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commonly associated with good contact areas and poor contact regions in both the high-
and low-adhesion samples, respectively [27]. Singh, R. et al. [28] used cold-spray process
to deposit IN 718 powders on the IN 718 substrates which were well-polished, sandblasted
with F-150 grit and F-36 grit, respectively. In was found that the higher the roughness,
the larger the powder particle plastic deformation and the higher the interfacial material
mixing. On the contrary, due to poor intermixing of material, defects such as cracks and
spalling would appear after coating solidification when the substrate surface roughness
was low.

However, the aforementioned research mainly analyzed the influence of line roughness
parameters on the BS. Since the roughening of a substrate surface is a stochastic process [29],
the surface topography of sandblasted surface has strong randomness [30]. The line
roughness parameters would not completely reflect the morphological characteristics of
the sandblasted surface [31] and influence on the BS of TSCs. Areal roughness parameters,
namely 3D roughness parameters (3DRPs), represent the contour features within a larger
area compared to that of the line roughness parameters [32]. According to ISO 25178-2, the
3DRPs can be divided into amplitude parameters and comprehensive parameters, and the
definitions of common parameters are as follows.

− Sa, this parameter expands the line roughness parameter Ra three dimensionally,
represents the arithmetic mean of the absolute coordinate Z (x, y) in a defined area.

− Sku, this parameter expands the line roughness parameter Rku three dimensionally,
and is used to evaluate sharpness in the height distribution.

− Sp, this parameter expands the line roughness parameter Rp three dimensionally. It is
the maximum value for peak height.

− Sq, this parameter expands the line roughness parameter Rq three dimensionally. It
represents the root mean square for Z(x, y) within the evaluation area.

− Ssk, this parameter expands the line roughness parameter Rsk three dimensionally;
parameter Ssk, is used to evaluate deviations in the height distribution.

− Sv, this parameter expands the line roughness parameter Rv three dimensionally. It is
the maximum value for the valley’s depth.

− Sz, this parameter expands the line roughness parameter Rz three dimensionally. The
maximum height Sz is equivalent to the sum of the maximum peak height Sp and
maximum valley depth Sv.

− Sdq, this parameter expands the line roughness parameter Rdq three dimensionally. It
indicates the mean magnitude of the local gradient (slope) of the surface. The surface
is more steeply inclined as the value of the parameter Sdq becomes larger.

− Sdr, this parameter signifies the rate of an increase in the surface area. The increase
rate is calculated from the surface area derived by the projected area.

It is obviously that 3DRPs can more accurately describe the surface roughness of
the substrate due to the fact that 3DRPS can expand the line roughness parameter three
dimensionally [33]. Therefore, it is of great significance to study the influence of 3DRPs of
sandblasted surfaces on the bonding properties of TSCs. It was experimentally confirmed
that the surface morphology on the cross-section after being sandblasted exhibited fractal
characteristic, which was more closely related to the BS of ceramic coatings than roughness
parameters traditionally used [34]. However, the influences of different 3DRPs on the
bonding properties of TSCs were not further studied in published literatures.

In this study, an orthogonal test with sandblasting distance and sandblasting speed as
influencing factors was designed and was conducted on widely used AISI 4140 material
by an automatic sandblasting system. A 3D optical profiler was employed to analyze the
surface topography of sandblasted surfaces obtained by different sandblasting process
parameters. After sandblasting, HVOF WC-Co coating was prepared on the surface and
the BS was determined. In addition, a mathematical model of BS of TSCs as a function of
3DRPs was developed by using a regression analysis method. The aim of the study is to
analyze the effects of 3D morphology of sandblasted surface on BS of TSCs. The novelty of
the study is that the key 3DRPs which exhibit significant influences on the BS of TSCs are
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determined by a nonlinear regression method and the influence mechanisms of key 3DRPs
are explored.

2. Experimental Procedures
2.1. Experimental Materials

Round specimens of 25 mm diameter and 5 mm thickness made of hardened AISI 4140
were used in this study. Its chemical composition is listed in Table 1. To simulate a hardened
component surface, the surface of the sample was hardened by induction quenching prior
to sandblasting. As shown in Figure 1, the hardened layer is composed of lath martensite
and acicular martensite. The Vickers hardness of the hardened layer varies between 580
and 620 HV.

Table 1. Chemical composition of AISI 4140 steel (wt.%).

C Cr Mo Si Mn Fe

0.38–0.43 0.8–1.1 0.15–0.25 0.15–0.35 0.75–1.0 Bal.
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particle size of 24 mesh. As shown in Figure 2, the sand particles had the shapes of irreg-
ular edge angles, around which many sharp peaks were randomly distributed. Under the 
action of compressed air, the sand particles impacted the substrate surface at high speed. 
The sharp peaks were conducive to cut the substrate surface and realize a coarsening treat-
ment of the substrate surface. After the pretreatment of substrate surface, the coating was 
prepared by HVOF. The powder deposited was WC-Co powder (Metco™ 72F-NS, Sulzer-
Metco, Winterthur, Switzerland) with a mixture of 88% WC and 12% Co in weight and 
was of spherical shape in scanning electron microscopy (Figure 3). The particle size of the 
WC-Co powder was in the range of 15–45 μm.  

Figure 1. Microstructure of substrate hardened layer.

The grit material used for sandblasting pretreatment was white corundum with a
particle size of 24 mesh. As shown in Figure 2, the sand particles had the shapes of irregular
edge angles, around which many sharp peaks were randomly distributed. Under the
action of compressed air, the sand particles impacted the substrate surface at high speed.
The sharp peaks were conducive to cut the substrate surface and realize a coarsening
treatment of the substrate surface. After the pretreatment of substrate surface, the coating
was prepared by HVOF. The powder deposited was WC-Co powder (Metco™ 72F-NS,
Sulzer-Metco, Winterthur, Switzerland) with a mixture of 88% WC and 12% Co in weight
and was of spherical shape in scanning electron microscopy (Figure 3). The particle size of
the WC-Co powder was in the range of 15–45 µm.
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2.2. Sandblasting Process and Samples Preparation

The automatic sandblasting system was used for the sandblasting treatment of sub-
strate surface to realize a sandblasting process with high repeatability and reproducibility
(Figure 4). The system is composed of three major modules: sample holder module, motion
control module, and sandblasting module. Before sandblasting process, samples to be
pretreated were degreased and rust-removed with acetone and attached to the sample
holder with strong magnets. Subsequently, sandblasting parameters (such as sandblasting
distance, sandblasting angle, and sandblasting pressure) and motion parameters (such
as sandblasting speed and overlapping rate) were set through sandblasting module and
motion control module, respectively. It should be noticed that the sandblasting gun could
feed at any speed along with X, Y and Z directions, owing to precise control of the motion
control module.
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To prepare sandblasted surface with different morphological characteristics, an orthog-
onal test plan based on statistical Design of Experiments (DOE) with sandblasting distance
and sandblasting speed as influencing factors was designed. The results were subsequently
analyzed and evaluated using includes central composite design (CCD) response surface
methods. In the CCD test design, the test points are composed of cube points, center
points, and axial points [35,36]. Based on the previous process research results, the center
point of sandblasting speed and sandblasting distance was set as 200 mm/s and 200 mm,
respectively. As listed in Table 2, five levels were set for each factor ranged from 129.3
to 270.7. Other process parameters were as follows: the sandblasting angle was 90◦, the
sandblasting pressure was 0.7 MPa, the overlapping rate was 50%, and each sample was
sandblasted once at a time. To remove residual sand particles, sample surfaces were cleaned
with compressed air after sandblasting.

Table 2. The levels of sand blasting process parameters.

Parameters
Levels

−r −1 0 1 r

Sandblasting Distance (mm) 129.3 150 200 250 270.7
Sandblasting Speed (mm/s) 129.3 150 200 250 270.7

The WC-12Co coating on the surface of the BS test sample was fabricated by HVOF
system (JET KOTE III, Stellite, Latrobe, PA, USA), which used propylene as fuel gas, oxygen
as auxiliary fuel gas and argon as powder gas. The spraying processes were carried out
according to the process parameters listed in Table 3.

Table 3. Thermal spraying process parameters.

Process Parameters Values

HVOF

Oxygen flow (SCFH) 975
Propylene flow (SCFH) 120

Powder feed rate (g/min) 60
Spraying distance (mm) 180
Spraying speed (mm/s) 1100
Layer thickness (mm) 0.25

2.3. Test Design

The surface topography of the samples before and after sandblasting was evaluated
by Inspect S50 tungsten filament scanning electron microscope. In addition, the surface
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of each sample after being sandblasted was inspected by a 3D optical profiler (Contour
GT-K1, Bruker, Karlsruhe, Germany), which was a precision instrument developed on the
basis of white light interferometry [37]. The vertical scanning interferometry mode was
used to characterize the rough surface [38]. Due to the topography of sandblasted surface
was uniform and anisotropy [34], topographical measurements were taken at 5 different
random locations on each sample based on ISO 4287, ISO 12085, ISO 13565–2/3 and ISO
25178–2. The scanning surface area and scanning speed was 1267.2 µm × 950.4 µm and
0.5 mm/s, respectively. Furthermore, to reduce the measurement uncertainty and noise,
the instrument was placed on a vibration isolation platform, and the threshold of signal-
to-noise level was set to 5%. Finally, the raw data obtained from the profiler was filtered
and processed according to the ISO 4288:1996 using VISION 64™ software (v5.8.4, Bruker,
Germany) [39].

To observe the characteristics of the interface between coatings and substrates, samples
with HVOF coatings were cut along the direction parallel to the diameter. Subsequently, stan-
dard metallography measures were employed to fabricate samples for microstructure analysis.
After corroded with aqua regia solution (HCl: HNO3 = 3:1, v/v), the cross-section surfaces
were characterized using an optical microscope (DMI5000M, Leica, München, Germany).

BS test specimens were prepared according to ISO 14916-2017. The diameter of the
cylindrical auxiliary connecting block was d = 25 mm, which was the same as that of the
coating samples. Before bonding, the non-sprayed surface of the coated sample and the
surface of the auxiliary connecting block were sandblasted, respectively. E-7 glue (Shanghai
Huayi Resins Co., Ltd., Shanghai, China) was used to bond the coating samples and the
auxiliary connecting blocks. Then the test specimens were placed in an incubator at a
constant temperature of 100 ◦C for 3 h for curing.

As shown in Figure 5, the clamping system consisted of a ball joint, which ensured
clamping and loading of the specimens through the center line following no bending and
torsion moments. Before the BS test, the clamping block was connected to a tensile testing
machine (AGS-X, Shimadzu, Kyoto, Japan), and then was pulled in the opposite direction at
a speed of 1 mm/min. To avoid the influence of defects in the BS test specimens, a handheld
X-ray fluorescence spectrometer (S1 TITAN 200, Bruker, München, Germany) was used to
detect whether the iron content at the fracture section increased significantly, which meant
that the sample was cracked from the interface between the coating and the substrate.
The BS test results were only obtained if the separation occurred at the interfaces between
coatings and substrates. The BS of the coatings for each group of sandblasting samples
were tested for three effective values, and the average of the above three test values was
taken as the BS of the TSCs corresponding group of sandblasting parameters.
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3. Results and Discussion
3.1. Morphological Characteristics of Substrate Surface

Figure 6 shows the typical micromorphology of the sample surface before and after
sandblasting. The surface before sandblasting is relatively smooth without obvious pits
and convex peaks and evenly distributed with machining grooves and residual chip edges
(Figure 6a). Nevertheless, morphology of the surface after being sandblasted is relatively
rough, the number of pits and peaks are significantly increased, and the unevenness was
clearly observed (Figure 6b).
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According to the 3D morphological characteristics of the sample surface after sand-
blasting pretreatment (Figure 7), it could be seen that many irregular peaks and pits are
randomly distributed on the substrate surface, with different directions and no fixed orien-
tation. Furthermore, the common 3DRPs of sandblasted surface are analyzed and shown in
Table 4.
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Table 4. The results of 3DRPs and BS of TSCs.

Test
NO.

SD a

(mm)
SS b

(mm/s)

3DRPs
BS

(MPa)Sa
(µm) Sku

Sp
(µm)

Sq
(µm) Ssk

Sv
(µm)

Sz
(µm)

Sdq
(◦) Sdr

1 −1 −1 5.40 ± 0.15 4.42 ± 0.14 22.55 ± 1.1 6.98 ± 0.25 0.53 ± 0.08 37.53 ± 2.7 60.08 ± 4.4 49.69 ± 3.4 53.20 ± 4.2 30.34
2 −1 −1 5.23 ± 0.17 4.27 ± 0.19 21.92 ± 1.8 6.68 ± 0.23 0.52 ± 0.07 38.84 ± 2.9 58.36 ± 4.1 48.54 ± 3.3 55.98 ± 3.9 31.33
3 −1 −1 5.38 ± 0.11 4.58 ± 0.10 21.63 ± 1.9 6.79 ± 0.13 0.55 ± 0.12 36.17 ± 2.1 59.62 ± 4.5 49.01 ± 3.3 55.50 ± 3.8 30.44
4 0 0 4.65 ± 0.17 3.91 ± 0.19 21.54 ± 1.2 6.12 ± 0.12 0.41 ± 0.08 34.95 ± 2.8 56.50 ± 4.2 47.42 ± 3.7 46.22 ± 4.0 27.52
5 0 0 4.80 ± 0.14 3.83 ± 0.13 22.12 ± 1.5 6.01 ± 1.1 0.38 ± 0.05 35.70 ± 2.6 57.60 ± 3.9 46.38 ± 3.1 47.59 ± 3.5 28.19
6 0 0 4.68 ± 0.22 4.04 ± 0.19 21.43 ± 1.5 6.21 ± 0.25 0.41 ± 0.07 35.65 ± 1.7 57.01 ± 4.0 47.67 ± 2.6 47.18 ± 3.7 28.34
7 1 1 4.27 ± 0.19 3.20 ± 0.23 22.16 ± 2.1 5.64 ± 0.19 0.19 ± 0.06 29.79 ± 3.0 51.95 ± 4.3 48.42 ± 3.7 49.29 ± 3.6 38.11
8 1 1 4.41 ± 0.13 3.06 ± 0.09 21.53 ± 1.8 5.56 ± 0.08 0.17 ± 0.05 31.51 ± 2.7 50.78 ± 3.9 49.56 ± 3.4 48.22 ± 3.7 36.50
9 1 1 4.33 ± 0.21 3.39 ± 0.15 22.79 ± 1.3 5.61 ± 0.26 0.19 ± 0.03 32.88 ± 2.8 52.33 ± 4.0 48.97 ± 2.8 49.85 ± 3.8 37.00

10 1 −1 4.20 ± 0.34 3.78 ± 0.26 19.47 ± 1.5 5.35 ± 0.16 0.35 ± 0.06 31.93 ± 2.3 51.40 ± 4.1 46.64 ± 2.7 44.00 ± 4.2 32.47
11 1 −1 4.35 ± 0.28 3.82 ± 0.26 18.85 ± 1.6 5.23 ± 0.15 0.33 ± 0.11 30.59 ± 2.9 49.86 ± 4.8 45.67 ± 3.5 44.61 ± 3.9 30.57
12 1 −1 4.25 ± 0.11 3.76 ± 0.14 20.93 ± 1.4 5.27 ± 0.18 0.31 ± 0.03 32.99 ± 3.2 49.99 ± 4.4 47.73 ± 3.1 45.33 ± 3.7 31.89
13 0 0 5.45 ± 0.12 3.46 ± 0.11 23.23 ± 1.7 6.92 ± 0.11 0.28 ± 0.08 34.29 ± 1.9 58.52 ± 3.8 49.27 ± 2.8 51.88 ± 3.4 35.63
14 0 0 5.62 ± 0.17 3.30 ± 0.17 24.46 ± 1.6 6.77 ± 0.29 0.27 ± 0.05 34.21 ± 2.9 56.44 ± 3.6 48.61 ± 3.4 50.13 ± 3.2 37.82
15 0 0 5.61 ± 0.17 3.33 ± 0.13 25.89 ± 1.5 6.81 ± 0.31 0.27 ± 0.07 33.90 ± 3.1 57.57 ± 4.5 47.89 ± 3.2 50.51 ± 3.5 37.19
16 −1 1 4.53 ± 0.08 3.61 ± 0.09 18.26 ± 1.2 5.79 ± 0.25 0.47 ± 0.10 32.29 ± 2.5 51.56 ± 4.1 48.30 ± 3.9 48.84 ± 3.4 38.05
17 −1 1 4.77 ± 0.08 3.75 ± 0.11 19.01 ± 1.9 5.88 ± 0.13 0.46 ± 0.05 30.69 ± 2.3 51.35 ± 4.3 47.35 ± 3.6 47.04 ± 3.5 37.33
18 −1 1 4.47 ± 0.10 3.50 ± 0.12 19.77 ± 1.7 5.83 ± 0.19 0.48 ± 0.06 31.19 ± 3.5 50.84 ± 3.6 48.78 ± 4.0 48.59 ± 3.2 38.63
19 -r 0 5.27 ± 0.17 3.61 ± 0.08 21.70 ± 1.3 6.74 ± 0.14 0.40 ± 0.09 34.74 ± 2.7 57.84 ± 4.1 48.49 ± 3.0 54.45 ± 3.0 29.62
20 -r 0 5.10 ± 0.12 3.72 ± 0.15 22.89 ± 1.6 6.69 ± 1.1 0.43 ± 0.05 35.40 ± 2.4 59.05 ± 3.8 47.51 ± 3.9 55.34 ± 3.3 30.29
21 -r 0 5.41 ± 0.15 3.58 ± 0.11 22.56 ± 1.5 6.79 ± 1.1 0.40 ± 0.03 35.85 ± 2.9 57.69 ± 4.4 47.52 ± 3.6 56.09 ± 3.7 31.36
22 r 0 5.53 ± 0.25 3.28 ± 0.21 22.56 ± 1.2 6.94 ± 1.1 0.28 ± 0.03 32.23 ± 2.2 54.79 ± 3.5 48.46 ± 3.3 61.89 ± 3.8 31.58
23 r 0 5.30 ± 0.21 3.21 ± 0.24 21.98 ± 1.1 6.88 ± 1.1 0.25 ± 0.09 33.51 ± 2.8 52.94 ± 3.6 50.34 ± 3.1 59.47 ± 3.1 30.78
24 r 0 5.46 ± 0.26 3.15 ± 0.20 21.77 ± 1.4 6.95 ± 1.1 0.24 ± 0.08 33.88 ± 2.2 53.55 ± 4.5 50.01 ± 4.3 60.17 ± 3.5 31.33
25 0 -r 4.31 ± 0.19 3.96 ± 0.15 17.59 ± 1.7 5.52 ± 1.1 0.48 ± 0.14 34.95 ± 2.7 52.54 ± 4.1 48.16 ± 3.6 34.50 ± 3.3 29.84
26 0 -r 4.54 ± 0.18 4.06 ± 0.17 17.89 ± 1.1 5.46 ± 1.1 0.43 ± 0.04 33.49 ± 2.9 51.34 ± 3.8 46.33 ± 3.4 33.91 ± 4.2 28.38
27 0 -r 4.40 ± 0.24 4.11 ± 0.22 16.99 ± 2.3 5.41 ± 1.1 0.43 ± 0.08 35.13 ± 2.8 53.04 ± 4.6 46.87 ± 3.7 35.87 ± 4.0 28.74
28 0 r 4.41 ± 0.13 4.36 ± 0.15 23.28 ± 1.3 5.73 ± 1.1 0.37 ± 0.09 32.93 ± 2.7 56.21 ± 4.4 48.69 ± 2.6 46.70 ± 3.8 35.05
29 0 r 4.29 ± 0.11 4.21 ± 0.17 22.78 ± 1.5 5.84 ± 1.1 0.36 ± 0.03 31.87 ± 2.6 55.38 ± 4.2 46.98 ± 3.6 47.30 ± 3.1 36.11
30 0 r 4.53 ± 0.08 4.44 ± 0.13 23.01 ± 1.1 5.88 ± 1.1 0.39 ± 0.03 32.44 ± 2.6 56.99 ± 4.0 46.76 ± 3.1 47.66 ± 3.9 33.89

a sandblasting distance. b sandblasting speed.
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3.2. Details of HVOF Coatings

Based on the designed orthogonal test scheme, WC-Co TSCs were sprayed on the sam-
ples surfaces pretreated with various sandblasting process parameters. Figure 8 presents
the cross-sectional morphology of the prepared TSC. It can be observed that the thickness
of WC-Co TSC was 0.25 mm on average, and the coating is generally dense. Moreover, the
coating-substrate interface is well combined. A large number of grey lines (blue arrows)
and black dots (red arrows) are randomly distributed in the coatings microstructure, and
the EDS composition of point I was detected, as shown in Table 5, which indicates that
oxides and pores are formed during the coating deposition process [40,41]. In addition,
some areas (red dotted box) of the interface are distributed with pore defects and are
significantly deeper than the surrounding areas. The interfacial microstructure features can
be attributed to the morphology of the substrate after sandblasting.
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Table 5. EDS spectra of position I.

Element
C Co W O

w/% w/% w/% w/%

Position I 6.93 10.86 76.24 5.97

Subsequently, the BS test was carried out and the BS of the TSCs were presented in
Table 4. Figure 9 demonstrates the typical macroscopic morphology of the fracture section
after testing, which is uniform and without residual epoxy resin adhesive. Subsequently,
the Fe content at the fracture section of samples is detected, and the test results of BS of the
samples with high iron content are retained.
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3.3. Analysis of Regression Mathematical Model

After calculating average values of the 3DRPs and BS of samples under the same
sandblasting process parameters as shown in Table 4, regression analysis method was
employed to analyze the influence of 3DRPs on BS, and a regression analysis mathematical
model was developed. According to the definitions of common parameters, Sp represents
the height of the highest peak in the measured area, it can reflect overall morphology
characteristics of the area. In other words, Sp can only reflect the characteristics of the
highest peak in the evaluation area, but not the overall characteristics of the evaluation
area. Similarly, Sv represents the maximum depth of the valley bottom and Sz represents
the maximum height, which also cannot reflect the overall morphology characteristics of
the evaluation area. Therefore, the aforementioned three factors are not suitable to evaluate
the effect of roughness parameters on BS and are not considered in the regression analysis.

3.3.1. Analysis of Linear Regression Mathematical Model

Firstly, it is assumed that there is a linear relationship between 3DRPs and BS of the
TSCs. Equation (1) shows the assumed mathematical model.

bondstrength = λ0 + λ1Sa + λ2Sdq + λ3Sdr + λ4Sku + λ5Ssk + λ6Sq (1)

where bondstreth is BS of the coatings, λ0 is the assumed constant and λ1, λ2, λ3, λ4, λ5, λ6
are the assumed coefficients of roughness parameters Sa, Sdq, Sdr, Sku, Ssk, Sq, respectively.

Multiple linear regression analysis was conducted based on the measured data in
Table 4, and the analysis results were shown in Table 5. The linear regression mathemat-
ical model obtained from the analysis and calculation results in Table 5 was shown in
Equation (2).

bondstrength = −98.2121 + 79.122Sa + 3.1177Sdq + 0.4315Sdr − 1.0033Sku + 16.4362Ssk − 68.9272Sq (2)

The significance test method is used to verify the effectiveness of the regression model.
There are generally two methods, one is the F test to calculate the overall significance of
the regression equation, and the other is the t test to calculate the individual significance
of the regression coefficient [42]. Generally, if the conditions of the coefficient of deter-
mination R-value ∈ (0.8–1), the critical value of F-distribution F-value > F1−α(k,n − k −
1), and the error probabilities p-value < α are met, there is a significant linear correlation
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between the dependent variable and the independent variable, meaning that the regres-
sion mathematical model is acceptable [43]. According to the analysis and calculation
results in Table 6, it could be concluded that when the significant level α is taken as 0.05,
the correlation coefficient R-value = 0.7884 < 0.8, F-value = 2.6579 < F1−0.05(6,3) = 8.941,
and p-value = 0.3681 > 0.05. Therefore, it is considered that there is no linear correlation
between the dependent variables and the independent variables.

Table 6. The results of linear regression analysis.

Parameters Evaluation Confidence Interval

λ0 −98.2121 −312.1343–115.7101
λ1 79.1220 −105.7682–264.0122
λ2 3.1177 −1.4451–7.6806
λ3 0.4315 −0.2761–1.1392
λ4 −1.0033 −20.7124–18.7057
λ5 16.4362 −45.5166–78.3889
λ6 −68.9272 −216.7979–78.9434
R2 0.6217

F-value 2.6579
p-value 0.3681

3.3.2. Analysis of Nonlinear Regression Mathematical Model

Since the functional relationship between the independent variables Sa, Sdq, Sdr, Sku,
Ssk, Sq and the BS of TSCs is not clear, the power function shown in Equation (3) is assumed
as the preliminary nonlinear regression mathematical model.

bondstrength = λ0 ∗ Sa
λ1 ∗ Sdq

λ2 ∗ Sdr
λ3 ∗ Sku

λ4 ∗ Ssk
λ5 ∗ Sq

λ6 (3)

In order to facilitate the solution, both sides of Equation (3) are taken logarithm to
convert the original equation from nonlinear function to linear function, as shown in
Equation (4).

log 2(bondstrength) = log 2(λ0) + λ1 log 2(Sa) + λ2 log 2(Sdq) + λ3 log 2(Sdr) + λ4 log 2(Sku) + λ5 log 2(Ssk) + λ6 log 2(Sq) (4)

It is supposed that y = log 2(bondstrength), X0 = log 2(λ0), X1 = log 2(Sa), X2 =
log 2(Sdq), X3 = log 2(Sdr), X4 = log 2(Sku), X5 = log 2(Ssk), X6 = log 2(Sq), the above
equation is transformed into the equation shown in Equation (5).

y = X0 + λ1X1 + λ2X2 + λ3X3 + λ4X4 + λ5X5 + λ6X6 (5)

Multiple linear regression analysis was carried out on the basis of the measured data
in Table 4, and Table 7 showed the regression coefficient analysis results. It could be found that
when the significant levelα is 0.05, R-value = 0.9395 > 0.8, F-value = 11.7585 > F1−0.05(6,3) = 8.941,
and p-value = 0.0523 > 0.05, indicating that the regression mathematical model is acceptable.
At the same time, it could also be seen that the confidence interval of the regression
coefficient λ4 contained zero point, indicating that the influence of Sku on the BS is not
significant. The time series residual diagram obtained from the analysis is shown in
Figure 10. Most of the error bars pass through the zero line, but the error bar of the fifth
sample deviates far from the zero line, which indicates that it is a singular point, and the
sample data should be removed in the subsequent model optimization process.
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Table 7. The results of regression analysis.

Parameters Evaluation Confidence Interval

X0 −19.2499 −48.4024–−9.9027
λ1 13.7812 11.4503–39.0127
λ2 5.2626 0.5997–11.1250
λ3 0.6477 0.1512–1.4466
λ4 0.0479 −2.1529–2.2487
λ5 0.1817 0.0593–0.7226
λ6 −15.2104 −40.9664–−10.5456
R2 0.8826

F-value 11.7585
p-value 0.0523
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To further analyze and obtain the 3DRPs of sandblasted surface that have a significant
impact on the BS, a stepwise regression analysis method is used to optimize the regression
mathematical model. As shown in Table 8, the Sku and Ssk have no significant impact on
the BS of TSCs and could be removed.

Table 8. The results of stepwise regression analysis.

Independent Variable Coeff. t-Stat p-Value

X1 7.7177 3.327 0.0208
X2 4.6459 2.8207 0.0371
X3 0.4352 2.6989 0.0428
X4 0.3043 0.461 0.6688
X5 0.1857 1.3443 0.25
X6 −8.8674 −3.647 0.0148

After removing the influencing factors Sku, Ssk and the fifth group sample data, multi-
ple linear regression analysis is performed on the remaining experimental data. According
to the analysis results in Table 9, the mathematical model equation of the power function
regression after linear transformation could be obtained as shown in Equation (6).

y = −17.6617 + 7.7177X1 + 4.646X2 + 0.4352X3 − 8.8674X6 (6)
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Table 9. The results of linear regression analysis.

Parameters Evaluation Confidence Interval

X0 −17.6617 −39.4122–4.0887
λ1 7.7177 1.7548–13.6807
λ2 4.6460 0.4120–8.8800
λ3 0.4352 0.0207–0.8496
λ6 −8.8674 −15.1177–−2.6172
R2 0.8293

F-value 6.0716
p-value 0.037

When the significant level α is 0.05, R-value = 0.9107 > 0.8, F-value = 6.0716 >
F1−0.05(4,5) = 5.192, p-value = 0.037 < 0.05, and the confidence interval of each variable does
not contain zero points, indicating that the linear transformation power function model
optimized by stepwise regression analysis has strong correlation. The mathematical model
is restored to the power function regression mathematical model, as shown in Equation (7).
It can be seen that the 3DRPs that significantly affect the BS of the coating are Sa, Sdr, Sdq
and Sq.

bondstrength = 2−17.6617 ∗ Sa
7.7177 ∗ Sdq

4.646 ∗ Sdr
0.4352 ∗ Sq

−8.8674 (7)

3.4. Influence Mechanisms of 3DRPs

The regression mathematical model reveals that a nonlinear regression relationship
between 3DRPs and BS was obtained. To verify the feasibility of the regression model,
the influence mechanism of each parameter on the bonding property is analyzed in this
section. It should be noted that the definition and calculation formula of each parameter
and reference surface are in compliance with ISO 25178–2.

3.4.1. Influence Mechanisms of Sa and Sdr

Sa represents the arithmetic mean of the absolute value of the height differences
between pits and convex peaks in a definition area relative to a reference surface, and the
calculation formula is shown in Equation (8). This parameter extends the surface profile
roughness parameter Ra to three dimensions, which can reflect the characteristics of a
sandblasted surface more comprehensively.

Sa =
1
A

x

A

|Z(x, y)|dxdy (8)

where A is area of the definition area, Z(x,y) is the function of surface contour curve.
As shown in Equation (9), Sdr represents increase rate of the extended area (surface

area) of a region relative to the projected area, which increases with refinement and rough-
ness of surface structure.

Sdr =
1
A

x
A

(

√√√√[1 +
(

∂Z(x, y)
∂x

)2

+

(
∂Z(x, y)

∂y

)2
]
− 1)dxdy

 (9)

In order to illustrate the influence mechanisms of Sa and Sdr on the BS of TSCs, the
actual 3D contour is extracted from the sample surface (Figure 11). It is obvious that the
left area is coarser and more uniform than the right area. The height differences between
the pits or peaks of left area and the reference surface (|Z(xL,yL)|) are larger than that
of right area (|Z(xR,yR)|), which results in that Sa-Left in left area is larger than Sa-Right in
right area based on Equation (8). Similarly, according to Equation (9), larger |Z(x,y)| could
obtain larger Sdr. Based on the above analysis, the variation trends of parameters Sa and
Sdr are consistent, which is also demonstrated in Table 4. When the definition area A is the
same, the larger Sa and Sdr are ascribed to the greater height differences between the pits
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or peaks on the contour surface and the reference surface, and lead to the larger surface
area of the contour [33]. This increases the contact area in the interfaces between TSCs
and substrates [18]. In addition, the pits and peaks with large height differences could
provide more anchor points for TSCs, which is conducive to further improve the coating
BS [44,45]. Therefore, the bonding performance of TSCs is proportional to Sa and Sdr, which
is consistent with the mathematical model in Equation (7).
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Figure 11. Under the same evaluation area, larger Sa and Sdr of left area represent that the height
differences Z(xL,yL) is larger than Z(xR,yR), which lead to more anchor points for TSCs and larger
contact area at the interface between TSCs and substrates.

3.4.2. Influence Mechanisms of Sdq

Sdq is the root mean square slope, and the calculation formula is shown in Equation
(10), which represents steepness of the sandblasted surface and is equal to root mean square
of the slope of all points on the surface. As an example, Sdq is zero meaning the surface is
an ideal flat plane. In other words, the steeper the surface, the greater the Sdq.
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Figure 12a presents the contour curve along X-Z longitudinal section of the sandblasted
surface. The solid red line in Figure 12b shows the actual contour curve of the extracted
local area A, whose function equation is assumed to be Z1(x, y). It can be observed that
the depth of the contour shown by the solid red line is deeper, and the contour bottom
is relatively flat. The absolute value of slope of each point (|∂Z1(x, y)/∂x|) in this area is
approximately zero. Similarly, in the Y-Z longitudinal section, the absolute value of slope
of each point (|∂Z1(x, y)/∂y|) is also approximately zero. Consequently, the value of Sdq
of the area A calculated by Equation (10) is relatively small. In contrast, the hypothetical
comparative analysis contour curve shown by the dashed black line, with an assumed
function equation Z2(x, y), exhibits a uniform distribution of pits and peaks with no flat
area. Therefore, it is obvious that the absolute value of slope value of each point in the X-Z
longitudinal section (|∂Z2(x, y)/∂x|) and the Y-Z longitudinal section (|∂Z2(x, y)/∂y|) is
relatively larger, resulting in a larger Sdq.
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Figure 12. (a) 3D surface morphology and contour curve of a surface area after sandblasted; (b) anal-
ysis of the influence of sandblasted surface with different Sdq on the bonding strength of TSCs. Sdq

represents sharpness of the pits or peaks on the surface. Larger Sdq means that the surface is composed
of sharper pits and peaks and fewer flat areas.

According to the above analysis results, the sandblasted surface with small Sdq is
characterized by pits and peaks with low slope angle and flat bottom/tip, which are
detrimental to form anchor points, resulting in forming splash splats during the deposition
process [28] and poor BS between TSCs and substrates [45]. On the contrast, large Sdq
represents that the surface is composed of sharper pits and peaks and fewer flat areas,
which means more anchor points for mechanical bonding [22] and higher deformation of
molten particle. In general, the anchor points and high deformation of particle are benefit to
improve the BS of coatings [46]. Therefore, it can be concluded that the BS of TSCs is directly
proportional to Sdq, which further proves the acceptability of the mathematical model.

3.4.3. Influence Mechanisms of Sq

Sq is the root mean square of the height difference of each point in the definition area
relative to the reference surface, that is, the standard deviation of the height difference of
each point in the area. The calculation formula is shown in Equation (11).

Sq =

√
1
A

x

A

Z2(x, y)dxdy (11)

Figure 13 shows actual morphological characteristics of a sandblasted surface. It could
be observed that the height differences (|Z1(x, y)|) of the points above the reference surface
is smaller than that of the points below the reference surface (|Z2(x, y)|). Furthermore,
the larger the value of Sq, the greater the difference between (|Z1(x, y)|) and (|Z2(x,
y)|), and the surface is mainly distributed with deep pits, as presents in Figure 13. Due
to these deep pits, the molten powder particles are sticked to the sidewalls of the pits
during thermal spraying [47], which would affect the coating deposition process in the
following two aspects. Firstly, the molten particles could not reach the bottom of the pits,
and subsequently residual pore defects are easily formed at the bottom of the pits [48], as
shown in Figure 8. Secondly, the speed of the molten particles reaching surfaces of the
deep pits would be greatly reduced, which is not conducive to the wetting effect between
TSCs and substrates, thereby reducing the bonding performance [49]. In summary, it is
found that the higher the Sq, the lower the BS, which is consistent with the mathematical
model (Equation (7)). Moreover, according to Equations (8) and (11), Sa and Sq are directly
proportional to height difference (|Z(x, y)|) of each point on the sandblasted surface.
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Therefore, the regression mathematical model further confirms that it is not that the greater
the sandblasted surface roughness, the higher the BS [50].
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Figure 13. The sandblasted surface with large Sq is mainly distributed with deep pits. During thermal
spraying process, the stickiness of side walls of deep pits reduces the speed of molten particles, and
prevents the molten particles from reaching the bottom of the deep pits, which leads to the residual
pore defects and poor BS of the TSCs.

On the basis of the influence mechanisms of 3DRPs on BS, the influence trends of Sa,
Sdr, Sdq and Sq are in agreement with the regression mathematical model (Equation (7)). As
a conclusion, the regression mathematical model is able to reveal the relationship between
the 3DRPs of sandblasted surface and the BS of TSCs. In order to optimize sandblasting
process parameters, the influence mechanisms of different process parameters on the key
3DRPs should be furtherly explored in the future research.

4. Conclusions

In this study, the influence of 3DRPs of the sandblasted surface of the substrate on
the BS of the WC-Co coating was studied. The substrates were pretreated with different
sandblasting process parameters and analyzed using a 3D optical profiler. The mathemat-
ical model between the 3DRPs and the BS of the coating was established by regression
analysis method, and the key 3DRPs that had a significant impact on the BS were obtained.
Furthermore, the influence mechanism of the key 3DRPs on the BS was explored. The
following conclusions are made based on detailed study.

(1) 3D morphology shows that there are many irregular peaks and pits randomly dis-
tributed on the sandblasted surface of the substrate, with different directions and no
fixed orientation. However, the sandblasted surfaces obtained by some sandblasting
process parameters are characterized by fine and deep pits and widened area, which
are unfavorable to the BS between TSCs and the substrate.

(2) 3DRPs Sa, Sdr, Sdq and Sq of the sandblasted surface have significant effects on the
BS of TSCs, which present a nonlinear regression relationship. The obtained nonlin-
ear regression mathematical model is bondstrength = 2−17.6617 ∗ Sa

7.7177 ∗ Sdq
4.646 ∗

Sdr
0.4352 ∗ Sq

−8.8674. According to the model, Sa, Sdr and Sdq are correlated positively
with the BS, on the contrary, Sq is in inverse proportion to the BS, which further
confirms that it is not that higher surface roughness of the sandblasted surfaces lead
to higher BS of TSCs.

(3) The influence mechanisms of the 3DRPs on the BS of TSCs are mainly concluded
as follows: Sa and Sdr mainly signify the rate of an increase in the surface area and
affect the contact area between the TSCs and the substrates. Sdq mainly represents the
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sharpness of pits and peaks on the sandblasted surface, which affects the number of
anchor points for mechanical bonding of the TSCs. Sq is equal to the deviation degree
of the height differences between pits and peaks on the sandblasted surface and the
reference surface, which influences the quantity of coating defects and the wetting
effect of interface between TSCs and the substrates.
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