Research on Wear and Corrosion Resistance of Ni60-WC Coating Fabricated by Laser on the Preheated Copper Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Morphology and Phases
3.2. Microstructure and Binding Region
3.3. Microhardness
3.4. Wear Resistance
3.5. Corrosion Resistance
4. Conclusions
- (1)
- A Ni60-WC coating is successfully fabricated on the preheated copper substrate by laser. The cladding coating is composed of some reinforced phases, such as γ (Fe, Ni), M7C3, WC and Cr0.09Fe0.7Ni0.21.
- (2)
- The average microhardness is 941.6 HV0.5, which is about 4.7 times greater than that of copper alloy substrate.
- (3)
- The wear rate of the cladding coating is 4.9 × 10−5 mm3·N−1·m−1, which was about 1.14% of copper substrate. The existence of the reinforced phases decreases the friction coefficient and improves the wear resistance of the copper substrate.
- (4)
- The open circuit potential and the minimum corrosion current density of the Ni60-WC coating are −0.708 V and 2.34 × 10−7 mA·mm−2, respectively. The Ni60-WC coating exhibits excellent corrosion resistance compared with copper alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhuo, L.; Yin, E. Progress, challenges and potentials/trends of tungsten-copper (W-Cu) composites/pseudo-alloys: Fabrication, regulation and application. Int. J. Refract. Met. Hard Mater. 2021, 100, 105648. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Par, M.A. Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. J. Alloys Compd. 2019, 781, 1074–1090. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, H.; Zhu, S.; Yong, W.; Xie, J. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater. 2021, 215, 117118. [Google Scholar] [CrossRef]
- Kuanyshev, M.; Nuralin, B.; Salimov, B.; Kaukarov, A.; Murzagaliev, A.; Narikov, K.; Shakeshev, B. The improvement of friction bearing manufacturing technology by using cop-per alloy. Int. J. Adv. Manuf. Technol. 2017, 88, 317–324. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, T.; Liu, Y.; Gao, Y.L.; Di, C. Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser. J. Mater. Res. Technol. 2020, 9, 8283–8288. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electrophoretic Deposition of PANI Nano fibers as a Manufacturing Technol-ogy for corrosion protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Abedini, B.; Ahmadi, N.P.; Yazdani, S.; Magagnin, L. Electrodeposition and corrosion behavior of Zn-Ni-Mn alloy coatings deposited from alkaline solution. Trans. Nonferr. Met. Soc. China 2020, 30, 548–558. [Google Scholar] [CrossRef]
- Zang, J.; Li, H.; Sun, J.; Shen, Y.; Su, N.; Feng, X. Microstructure and thermal conductivity of Cu-Cu2AlNiZnAg/diamond coatings on pure copper substrate via high-energy mechanical alloying method. Surf. Interfaces 2020, 21, 100742. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Zhang, P.; Guo, J.; Yu, Z.; Ringsberg, J.W. Improving surface resistance to wear and corrosion of nickel-aluminum bronze by laser-clad TaC/Co-based alloy composite coatings. Surf. Coat. Technol. 2021, 405, 126592. [Google Scholar] [CrossRef]
- Scendo, M.; Staszewska-Samson, K.; Danielewski, H. Corrosion Behavior of Inconel 625 Coating Produced by Laser Cladding. Coatings 2021, 11, 759. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Q.; Zhang, Z.; Tang, S.; Cai, Q. Microstructure and Fatigue of EA4T Steel in Laser Cladding Remanufacturing. Coatings 2022, 12, 1106. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Lu, B.; Tan, N.; Cai, L.; Yong, Q. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating. Opt. Laser Technol. 2022, 155, 108449. [Google Scholar] [CrossRef]
- Sun, M.; Pang, M. Defect Formation Mechanism and Performance Study of Laser Cladding Ni/Mo Composite Coating. Coatings 2021, 11, 1460. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, K.; Kang, L.; Yan, B. Laser Cladding on Copper with Composite Powder C-Al2O3-Cu. J. Mater. Eng. Perform. 2022, 31, 1317–1324. [Google Scholar] [CrossRef]
- Yin, J.; Wang, D.; Meng, L.; Ke, L.; Hu, Q.; Zeng, X. High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on copper substrate by laser-induction hybrid cladding. Surf. Coat. Technol. 2017, 325, 120–126. [Google Scholar] [CrossRef]
- Lu, S.; Wang, L.; Zhou, J.; Liang, J. Microstructure and tribological properties of laser-cladded Co-Ti3SiC2 coating with Ni-based interlayer on copper alloy. Tribol. Int. 2022, 171, 107549. [Google Scholar] [CrossRef]
- Pellizzari, M.; Zhao, Z.; Bosetti, P.; Perini, M. Optimizing direct laser metal deposition of H13 cladding on CuBe alloy sub-strate. Surf. Coat. Tech. 2022, 432, 128084. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Zhao, P.; Zhang, J.-M.; Gong, J.-G.; Xuan, F.-Z. Cyclic deformation response of austenitic Ni-based alloy: Mechanical behavior, internal stress evolution and microstructural feature. Mater. Sci. Eng. A 2022, 850, 143522. [Google Scholar] [CrossRef]
- Wan, Z.; Dai, W.; Guo, W.; Jia, Q.; Zhang, H.; Xue, J.; Lin, L.; Peng, P. Improved corrosion resistance of Ni-base Al-loy 600 welded joint by laser shock peening. J. Manuf. Process. 2022, 80, 718–728. [Google Scholar] [CrossRef]
- Bhaskararao, K.A.; Janardhana, G.R. Influence of Al2O3 and ZrO2 alloying on microstructure, hardness and flexural strength of Ni based functionally graded composites by vacuum sintering. Compos. Commun. 2020, 22, 100458. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, L.L.; Zhang, L.; Zhang, J.W.; Ban, C.Y. Effect of steady magnetic field on microstructure and properties of laser cladding Ni-based alloy coating. J. Mater. Res. Technol. 2022, 17, 2145–2157. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Liu, X.; Wang, C.; Cui, H.; Song, Q.; Huang, K.; Li, N.; Jiang, X. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding. Surf. Coat. Tech. 2021, 412, 126976. [Google Scholar] [CrossRef]
- García, A.; Fernández, M.R.; Cuetos, J.M.; González, R.; Ortiz, A.; Cadenas, M. Study of the Sliding Wear and Friction Behavior of WC + NiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test. Tribol. Lett. 2016, 63, 1–10. [Google Scholar] [CrossRef]
- Zhang, P.-X.; Yan, H.; Sun, Y.-H. Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel. J. Mater. Sci. 2021, 56, 8209–8224. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Sun, J.; Jiang, S. Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating. Int. J Refract. Met. Hard Mater. 2020, 86, 105112. [Google Scholar] [CrossRef]
- Su, W.; Cui, X.; Yang, Y.; Guan, Y.; Zhao, Y.; Wan, S.; Li, J.; Jin, G. Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings. Surf. Coat. Technol. 2021, 418, 127281. [Google Scholar] [CrossRef]
- Tang, B.; Tan, Y.; Zhang, Z.; Xu, T.; Sun, Z.; Li, X. Effects of Process Parameters on Geometrical Characteristics, Microstructure and Tribological Properties of TiB2 Reinforced Inconel 718 Alloy Composite Coatings by Laser Cladding. Coatings 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Pang, X.; Zhou, J.; Li, B.; Zhou, F. Optical performance and corrosion resistance of TiN/Ni multiphase cermet by laser cladding. Opt. Laser Technol. 2021, 143, 107308. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, L.; Huang, Y.; Xu, S. A novel method to fabricate Ni/WC composite coatings by laser wire deposition: Processing characteristics, microstructural evolution and mechanical properties under different wire transfer modes. Addit. Manuf. 2021, 38, 101738. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Qiao, Y.; Du, X. Effect of Ni-coated WC reinforced particles on microstructure and mechanical properties of laser cladding Fe-Co duplex coating. Opt. Laser Technol. 2021, 142, 107209. [Google Scholar] [CrossRef]
- Shen, S.; He, X.; Gao, L.; Su, G.; Xu, C.; Xu, N. Study on crack behavior of laser cladding ceramic-metal composite coating with high content of WC. Ceram. Int. 2022, 48, 17460–17470. [Google Scholar] [CrossRef]
- Farahmand, P.; Kovacevic, R. Corrosion and wear behavior of laser cladded Ni–WC coatings. Surf. Coat. Technol. 2015, 276, 121–135. [Google Scholar] [CrossRef]
- Uhlig, H.H. Adsorbed and reaction-produce films onmetals. J. Electrochem. Soc. 1950, 97, 215C–220C. [Google Scholar] [CrossRef]
- Wu, L.; Ma, A.; Zhang, L.; Zheng, Y. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution. Corros. Sci. 2022, 201, 110304. [Google Scholar] [CrossRef]
Material | Fe | Mn | Al | Zn | Cu |
---|---|---|---|---|---|
Copper alloy | 1.35 | 3.2 | 6.3 | 29.01 | 60.14 |
Material | Ni | WC | Cr | Si | B | C | Fe |
---|---|---|---|---|---|---|---|
Ni60-WC powder | 66 | 5 | 12 | 1.5 | 2.5 | 1 | 12 |
Property | Copper Alloys |
---|---|
Density | 7281.32 kg·m−3 |
Specific Heat | 468.2 J·(kg·°C)−1 |
Thermal conductivity | 61.74 W·(m·K)−1 |
Thermal expansion coefficient | 23.58 × 10−6 |
Young’s modulus | 87.07 MPa |
Resistivity | 0.071 × 10−6 Ω·m−1 |
Process Parameters | Value |
---|---|
Laser power | 1400 W |
Scanning speed | 2 mm·s−1 |
Preheating temperature | 200 °C |
Laser beam diameter | 3 mm |
Overlap rate | 30% |
Item | Wear Rate (mm3·N−1·m−1) |
---|---|
Copper substrate | 4.3 × 10−3 |
Ni60-WC coating | 0.049 × 10−3 |
Item | Ecorr (V) | icorr × 106(mA·mm−2) | βa (mV·dec−1) | βc (mV·dec−1) | Rp (kΩ) | Corrosion Rate ((mm/year) × 102) |
---|---|---|---|---|---|---|
Ni60-WC coating | −0.69 | 0.234 | 59.8 | −160.1 | 113.74 | 1.58 |
Copper substrate | −0.232 | 1.14 | 37.5 | −123.979 | 33.9 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, T.; Li, G. Research on Wear and Corrosion Resistance of Ni60-WC Coating Fabricated by Laser on the Preheated Copper Alloy. Coatings 2022, 12, 1537. https://doi.org/10.3390/coatings12101537
Liu Y, Xu T, Li G. Research on Wear and Corrosion Resistance of Ni60-WC Coating Fabricated by Laser on the Preheated Copper Alloy. Coatings. 2022; 12(10):1537. https://doi.org/10.3390/coatings12101537
Chicago/Turabian StyleLiu, Yu, Tianhao Xu, and Guohui Li. 2022. "Research on Wear and Corrosion Resistance of Ni60-WC Coating Fabricated by Laser on the Preheated Copper Alloy" Coatings 12, no. 10: 1537. https://doi.org/10.3390/coatings12101537
APA StyleLiu, Y., Xu, T., & Li, G. (2022). Research on Wear and Corrosion Resistance of Ni60-WC Coating Fabricated by Laser on the Preheated Copper Alloy. Coatings, 12(10), 1537. https://doi.org/10.3390/coatings12101537