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Abstract: The mechanical properties of nanocrystalline pure Ni films are degraded due to grain
coarsening with exposure for a long time in ambient. In order to further improve the mechanical
properties of Ni-based thin films, as-sputtered Mo-W co-doped Ni/Ni3Al multilayered structures
were constructed. When the individual layer thickness (h) is lower than 40 nm, both the average
grain sizes and the crystallinity degrees are degraded, showing a tendency for the formation of the
amorphous phase. With h = 40 nm, nano-twins were observed as (111) twining interfaces for the
multilayers due to the reduction of the stacking fault energy by the co-doping of Mo-W, whereas the
nucleation and growth of the nano-twins were limited, without observations for the Mo-W co-doped
Ni/Ni3Al multilayer with h = 10 nm. The hardness of the multilayers was enhanced, and the elastic
modulus was reduced at a lower h, owing to the grain refinements and layer interface barriers for
strengthening, and the existence of the amorphous phase with the inferior modulus, respectively.
The resistance against the fracture was enhanced due to toughening by the lamellar structure for
the Mo-W doped Ni/Ni3Al multilayer at h ≤ 40 nm. Comprehensively, the Mo-W-doped Ni/Ni3Al
multilayer with 10 nm displays a superior mechanical performance.

Keywords: Ni-based films; multilayers; sputtering; microstructure; mechanical properties

1. Introduction

Recently, the structural components in microelectromechanical systems (MEMS)
should meet the requirements of maintaining good thermal conductivity, oxidation resis-
tance, and mechanical properties [1,2]. Based on the above service requirements, nanocrys-
talline Ni thin films have been widely used in structural components, such as micro-springs,
gears, and cantilevers in MEMS because of their excellent mechanical performance and
formability [3,4]. However, the hardness of pure Ni films decreases significantly due to the
rapid grain growth above 300 ◦C [5] and even the self-annealing of fine-grained, nonequi-
librium microstructure of pure nanocrystalline Ni film leads to grain coarsening and a
drop in the mechanical properties with exposure for a long time in ambient [6,7]. The
addition of elements such as Co [8], Mn [9], Mo [10], and W [11] to form binary Ni alloys
are suitable approaches to confine grain coarsening and further improve the mechanical
properties of nanocrystalline Ni-based films. Among them, the alloying of pure Ni films
by the W element can inhibit grain growth with an improvement of strength, significantly.
The relevant reports found that binary Ni-W films prepared by electroplating show grain
refinements with good hardness [11,12]. However, it is difficult to accurately control the
composition and microstructure of Ni-W films by electroplating, and wastewater with
heavy metal ions is produced in the preparation process, which is not in accordance with the
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development trend of green manufacturing [13]. Compared with the preparation of Ni-W
films by electroplating, magnetron sputtering can accurately modulate the composition and
microstructure of Ni-W films, so as to obtain Ni-based films with excellent properties [14].
Borgia et al. sputtered Ni-75 at.% W film with hardness reaching 17 GPa [15]. However,
higher internal stress in the Ni-W film will promote the formation of micropores in the
Ni-W film [16,17]. By studying the fracture toughness of Ni-W films, Armstrong [18] and
Yin [19] found that the aggregation of micropores in the films eventually led to the fracture
failure of the films. Therefore, the addition of an excessive W content (≥20 at.%) will
adversely affect the properties of Ni-based films.

To overcome these shortcomings of Ni-W thin films, the recent sputtering of Ni-Mo-W
ternary films with no more than 6 at.% W additions, showing an extraordinary balance of
strength and toughness, underpinned by the formation of the growth of nano-twins [20,21].
Due to this suite of properties, Ni-Mo-W films possess a lower and tailorable coefficient
of thermal expansion [22] and are compatible with the wafer-level manufacturability of
metal MEMS devices [23]. In addition, recent research focuses on the use of the ternary
formulation of the Ni-Mo-W catalyst with improved hydrogenation functions [24,25]. This
is due to the well-known hydrogenation properties of Ni and the higher hydrogenation
capacity of W with respect to Mo [26], which are also used as cathodes for hydrogen
production using electrolysis from water [27]. However, Mo atoms exhibit weaker inhibition
on grain growth compared with W atoms; the enhancement of the microstructure stability
and hardness for Mo-W-doped Ni-based film is limited [21]. To further improve the
mechanical properties of as-sputtered nanocrystalline thin films, the combination of the
elements doped, and the nanoscale multilayer architecture can provide the strategy to
achieve [28–34]. The advantages of synergistic layer interfaces and elements solution
strengthening can be expected for novelty element-doped multilayers, such as MoS2-
based [28,29], transition metal nitride-based [30–32], carbon-based [33], and Ni-based
multilayers [34], where the layer interfaces act as barriers to the grain boundaries and
dislocations’ movement. In our previous studies, W-doped Ni/Ni3Al multilayers with an
individual layer thickness of 40 nm showed significate hardness and wear resistance under
the synergistic strengthening effect of the W alloying and multilayered structure [34,35].
Many reports reveal that the effects of the phase and interface microstructure are adjusted
by the individual layer thicknesses on the strengthening of multilayer films composed of
modulation layers [31,36,37]. However, the influence of the individual layer thicknesses
on the microstructure and mechanical properties of as-sputtered Mo-W-doped Ni-based
multilayer coatings is still unclear and is expected to be further improved.

In order to further improve the mechanical properties of Ni-based thin films, as-
sputtered Mo-W co-doped Ni/Ni3Al multilayers were constructed with 5 at.% Mo and
5 at.% W co-additions and the individual layer thicknesses at 10~160 nm. The individ-
ual layer thickness, dependent on the microstructure and mechanical properties of the
as-sputtered Mo-W co-doped Ni/Ni3Al multilayer, was investigated and expounded. Con-
sequently, the strengthening mechanism of the as-sputtered Ni-based films induced by
Mo-W multi-elements dopants and nano-multilayer architecture were also revealed.

2. Materials and Methods

Mo-W doped Ni/Ni3Al multilayered films (hereafter referred to as the h Ni/Ni3Al-
MoW multilayer, where h is the individual layer thickness) were deposited on a Si (100)
(99.99% in purity) wafer by direct-current (DC) magnetron sputtering using an MPB-300B
coating system (Beijing Chuangshiweina Technology, Beijing, China). The substrate was
ultrasonically cleaned and dried. Before deposition, the vacuum chamber was evacuated
to a base pressure of 8.0 × 10−4 Pa. Sputter etching with a bias voltage of −300 V was
employed in an Ar environment for 30 min to remove surface contaminants from the
substrate. Deposition of the Ni/Ni3Al-MoW multilayers was conducted at a pressure
of 2 Pa (75 sccm Ar (99.9% in purity) flow rate) using a pure Ni target (100 at.% Ni),
Ni-25 at.% Al (74.9 at.% Ni, 25.1 at.% Al, hereafter referred to as Ni3Al) alloy target, and
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Mo-50 at.% W (50.0 at.% Mo, 50.0 at.% W, hereafter referred to as MoW) alloy target
with a purity of 99.9%. The modulated Ni-MoW and Ni3Al-MoW layers were deposited
through co-sputtered Ni (fixed power at 100 W), Ni3Al (fixed power at 80 W), and MoW
targets. Simultaneously, the modulated layered structure with different h was prepared
via alternation of the sputtering/closing time of Ni and Ni3Al targets, according to the
deposition rates. During deposition, the first layer on the substrate was a Ni-MoW layer
and the top layer was the Ni3Al-MoW on the surface, and the total film thickness was about
900 nm. The important processing parameters and chemical composition of the films are
listed in Table 1.

Table 1. Typical magnetron sputtering, structure, and composition parameters of multilayers.

Samples Sputtering
Time (s)

Individual Layer
Thickness (nm)

Element Compositions of
Monolayer Films (at.%)

10 nm Ni/Ni3Al-MoW
Ni-MoW 33 (45) Ni-MoW 10 (45) Ni 89.6; Mo 5.1; W 5.3

Ni3Al-MoW 32 (45) Ni3Al-MoW 10 (45) Ni 66.7; Al 23.8; Mo 4.9; W 4.6

40 nm Ni/Ni3Al-MoW
Ni-MoW 130 (12) Ni-MoW 40 (12) Ni 90.1; Mo 5.1; W 4.8

Ni3Al-MoW 128 (12) Ni3Al-MoW 40 (12) Ni 73.3; Al21.1; Mo 5.2; W 5.4

160 nm Ni/Ni3Al-MoW
Ni-MoW 520 (3) Ni-MoW 160 (3) Ni 88.9; Mo 5.5; W 5.6

Ni3Al-MoW 515 (3) Ni3Al-MoW 160 (3) Ni 72.7; Al 16.5; Mo 5.3; W 5.5

( ) represents the number of individual layers for Ni/Ni3Al-MoW multilayers.

The microstructure of the Ni/Ni3Al-MoW multilayers was investigated by X-ray
diffraction (XRD) and transmission electron microscopy (TEM). XRD was performed on
a Rigaku D/max 2500 diffractometer (Rigaku Ltd., Tokyo, Japan) with Cu Kα radiation
(λ = 0.15406) at room temperature with an angle range of 2θ = 30~68◦. According to Debye–
Scherrer’s equation [38], the XRD results can be used to calculate the average grain size
dXRD of nanocrystalline films:

dXRD = Kλ/β cosθ (1)

where K is Debye–Scherrer’s constant, generally K = 0.9, λ is the X-ray wavelength
(λ = 1.5406 nm), β is the width at half maximum (FWHM) of the sample after deduct-
ing the diffraction width of the instrument itself is expressed in the radian unit, rad, and
θ is the Bragg diffraction angle. The grain size calculated by Debye–Scherrer’s equation
is close to the actual size, which is in the range of 1~100 nm. The on-top surface and
cross-sectional microstructures of the Ni/Ni3Al-MoW multilayers were observed by a field
emission scanning electron microscope (FESEM, Zeiss Merlin Compact, Jena, Germany).
The three-dimensional surface topographies were performed by an atomic force microscope
(AFM) using a Nanonavi E-Sweep instrument (SII NanoTechnology Inc., Tokyo, Japan)
and the RMS (root-mean-square) surface roughness was calculated by Nanonavi E-Sweep
software extracted from the three-dimensional surface topographies automatically. The
cross-sectional TEM (XTEM, Tecnai G2 F20 S-TWIN, FEI Company, Hillsboro, CA, USA)
samples were prepared by mechanical grinding and polishing followed by thinning to an
electron transparent thickness by low-energy (3.5 keV) Ar ion milling and subsequent ion
polishing (Gatan PIPs, model 691, Berwyn, PA, USA). The modulation and interface of the
cross-sectional multilayers were observed by the TEM at 200 kV.

In order to reflect the mechanical properties varying the microstructures of the
Ni/Ni3Al-MoW multilayers, the hardness was determined on an Agilent Nano Inden-
ter G200 nanoindention tester (Agilent Technologies, Santa Clara, CA, USA) equipped with
a Berkovich indenter standard Berkovich tip at room temperature. To eliminate the effects
of the hard substrate, the peak load was 1.5 mN by employing the load-controlled mode,
and the penetration depth was no more than 10% of the total coating thickness. Ten indents
were performed on every sample. Each test was set at a loading rate of 0.1 mN/s and an
unloading rate of 0.05 mN/s. The holding time of 20 s at the maximum load was selected
to saturate the creep effects before unloading. The hardness of the multilayered films for
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each load was derived from the load depth indentation curves using the Oliver and Pharr
method [39], assuming a Poisson ratio of 0.3.

3. Results and Discussion
3.1. The Microstructure

Figure 1 shows the top-surface morphologies of the as-sputtered Ni/Ni3Al-MoW
multilayers under the scanning electron microscope (SEM). As shown in Figure 1, the
particles as typical island structures are observed on the surface of the Ni/Ni3Al-MoW
multilayers with varying h due to the agglomeration of deposited atoms during sputtering.
There are also no defects, such as holes and cracks, on the top-surface morphology of the
multilayer. It can be found that the size and globular shape of the particles on the surface
of the multilayered films with h = 160 nm and 40 nm are relatively uniform. However,
when h = 10 nm, the average size of the globular particles is decreased slightly, and there
are some larger particles among the finer particle island structures, showing the abnormal
growth of the particles on the top-surface. This can be attributed to the growth rates of
the particles in the island structure, which are determined by the deposition rates, which
are more variable with the increments of the frequency of the alternate sputtering of the
Ni target and Ni3Al target for the multilayer with h = 10 nm. This leads that the globular
particles’ size exhibits a discrepancy at varying growth rates, and the existence of a few
coarsened particles is demonstrated.
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Figure 1. Top-surface SEM images of Ni/Ni3Al-MoW multilayer with varying h: (a) 160 nm;
(b) 40 nm; (c) 10 nm.

During the magnetron sputtering process, the growth of the Ni/Ni3Al-MoW multi-
layers was formed by the condensation of a large number of Ni, Al, Mo, and W atoms
and corresponding atomic clusters on the surface of the substrate. When the multilayers
were sputtered at ambient, without heating the substrate, cone-shaped nano-particles were
distributed on the surface without continuous, long trenches or blotches, as shown in
Figure 2. It is worth noting that some of the particles are irregularly stacked, forming bright
and dark regions with height fluctuation of the particles, which does not exceed 25 nm for
the Mo-W doped Ni/Ni3Al multilayers. It indicates that the significant roughness of the
surface is presented and varied with the h for the multilayers. The RMS (root-mean-square)
surface roughness was calculated by the formulation, as follows [40]:

RMS =

[
1
N

N

∑
i=1

(Z−
_
Z)2

] 1
2

(2)
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where N is the number of the surface height, Z represents the maximum height, and
_
Z is

the average height of the examined area, respectively. As shown in Figure 2, the roughness
of the as-sputtered multilayer ranges from 2 nm to 4 nm. With h ≤ 40 nm, the surface
roughness decreases due to the lower height fluctuation of the particles within the surface,
resulting from the refinement of the nano-particles by the layer interfaces, without obvious
aggregation and excessive stacking, both in the plane and vertical directions. For the
Ni/Ni3Al-MoW multilayered film with h = 10 nm, the particles on the surface of the
multilayer exhibit obvious fluctuations in their height due to the variation of the growth
rates for the particles induced by frequent alternative sputtering Ni-MoW and Ni3Al-MoW
layers, and thus the surface roughness is increased slightly. The improved surface quality
with inferior roughness is provided by the modulation of a periodical h for the Mo-W
doped Ni/Ni3Al multilayered films.
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multilayers with different h: (a) 160 nm; (b) 40 nm; (c) 10 nm.

Figure 3a shows that the diffraction peaks of the γ-Ni-based solid solution phase with
a face-centered cubic (FCC) structure coincide on the (111) and (200) crystal planes for the
Ni/Ni3Al-MoW multilayers with h = 160 nm and 40 nm. This indicates that the lattice
difference of the γ-Ni-based solid solution phases between the Ni-MoW and Ni3Al-MoW
layers is very small. Under the effect of the compressive internal stress of the as-sputtered
multilayer, the solid solution of the Mo-W elements causes a slight lattice distortion, leading
to the lattice constants between the Ni-MoW and Ni3Al-MoW layers being almost the same,
without an obvious lattice mismatch. Compared with the intensities of the diffraction
peaks, it is found that the diffraction peak on the (111) plane is the strongest, which indi-
cates that the deposited thin film exhibits the (111) plane texture. The multilayers grow
along the (111) direction due to the minimum surface energy of the (111) plane for the
FCC-structured γ-Ni-based solid solution, and thus the deposited atoms tend to stack on
the close-packed (111) plane in order to reduce the surface energy. In this paper, no form
of external heat source was applied to the substrate during the sputtering process. Once
the atoms were deposited on the surface of the film, it was difficult to rearrange them by
diffusion. Therefore, the as-sputtered multilayer shows a strong texture on the (111) plane.
The average crystalline or grain size calculated by Debye–Scherrer’s equation inside the
multilayers, as shown in Figure 3b, decreases with the reduction of h for the increment
of the peak width at half the height (FWHM) of the γ-Ni (111) diffraction peak, indicat-
ing that the layer interfaced within the multilayers can inhibit the grain growth. When
h = 10 nm, it is worthy to note that attenuated and broad in γ-Ni (111) peaks can be detected
at 2θ between 42◦ and 46◦, showing a lower crystallinity. This implies that the formation
of the amorphous phase is promoted [41], resulting from disordered atom arrangements
induced by more interfaces with a lower h.



Coatings 2022, 12, 1616 6 of 13

Coatings 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

detected at 2θ between 42° and 46°, showing a lower crystallinity. This implies that the 

formation of the amorphous phase is promoted [41], resulting from disordered atom ar-

rangements induced by more interfaces with a lower h. 

 

Figure 3. (a) XRD results of Ni/Ni3Al-MoW multilayers and (b) average grain sizes calculated by 

Debye–Scherrer’s equation with h = 10 nm, 40 nm, and 160 nm. 

The cross-sectional FE-SEM images at a high magnification of the as-sputtered 

Ni/Ni3Al-MoW multilayers are shown in Figure 4. It can be seen that the sharp interfaces 

are presented between alternating layers within the sputtered Ni/Ni3Al-MoW multilayers 

for h = 160 nm and 40 nm, and the h is consistent with the designed value of the multi-

layers. When h = 10 nm, the layer interfaces in the lamellar structure are obscured due to 

the limitation of the SEM resolution for the observations, presenting a cross-sectional mor-

phology similar to that of the monolayer film. In addition, the columnar crystal structures 

are observed, as shown in the cross-sectional morphology of the as-sputtered multilayers. 

Combined with the AFM and XRD characterization results, the Ni/Ni3Al-MoW multi-

layered film grows as columnar crystals along the normal direction of the (111) plane. 

According to the Structure Zone Model [42,43], when Tdep/Tm < 0.458, the grains of the 

films grow as columnar structures and the direction is perpendicular to the film/substrate 

interface, where Tdep is the deposition temperature (≤100 °C), and Tm is the melting point 

of the Ni-5 at.% Mo-5 at.% W alloy (about 1450 °C) [44]. Thus, the columnar grains are 

observed for all the Ni/Ni3Al-MoW deposited at room temperature due to the condition 

agreement of the abovementioned Structure Zone Model. 

Figure 3. (a) XRD results of Ni/Ni3Al-MoW multilayers and (b) average grain sizes calculated by
Debye–Scherrer’s equation with h = 10 nm, 40 nm, and 160 nm.

The cross-sectional FE-SEM images at a high magnification of the as-sputtered Ni/Ni3Al-
MoW multilayers are shown in Figure 4. It can be seen that the sharp interfaces are
presented between alternating layers within the sputtered Ni/Ni3Al-MoW multilayers for
h = 160 nm and 40 nm, and the h is consistent with the designed value of the multilayers.
When h = 10 nm, the layer interfaces in the lamellar structure are obscured due to the
limitation of the SEM resolution for the observations, presenting a cross-sectional morphol-
ogy similar to that of the monolayer film. In addition, the columnar crystal structures are
observed, as shown in the cross-sectional morphology of the as-sputtered multilayers. Com-
bined with the AFM and XRD characterization results, the Ni/Ni3Al-MoW multilayered
film grows as columnar crystals along the normal direction of the (111) plane. According
to the Structure Zone Model [42,43], when Tdep/Tm < 0.458, the grains of the films grow
as columnar structures and the direction is perpendicular to the film/substrate interface,
where Tdep is the deposition temperature (≤100 ◦C), and Tm is the melting point of the
Ni-5 at.% Mo-5 at.% W alloy (about 1450 ◦C) [44]. Thus, the columnar grains are observed
for all the Ni/Ni3Al-MoW deposited at room temperature due to the condition agreement
of the abovementioned Structure Zone Model.
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In order to characterize the finer microstructure of the films clearly, the cross-sectional
BF-TEM observation of the representative h = 10 nm and 40 nm Ni/Ni3Al-MoW multilayers
was utilized, as shown in Figure 5a,b, respectively. It can be found that the contrast between
the Ni-MoW and Ni3Al-MoW layers is different, showing a typical lamellar structure with
sharp and straight layer interfaces in Figure 5a. The layered structure with a brighter
contrast is the Ni3Al-MoW layers; on the contrary, the layers with the darker contrast
are the Ni-MoW layers, due to more difficulty of the transmitted electron beam to pass
through the phases of the Ni-MoW layers. As demonstrated in the inset of Figure 5a, the
corresponding SAD results indicate that the diffraction rings of the Ni-MoW layers and
Ni3Al-MoW layers in the multilayers with h = 40 nm overlap each other, showing the
FCC-structured γ-Ni-based solid solution phases. The γ-Ni (111) diffraction ring exhibits
a brighter contrast, further confirming that the texture plane of the multilayer is (111).
Figure 5b shows that the volume proportions of the layer interfaces increase significantly
for the multilayered film with h = 10 nm, presenting the lamellar structure. A careful
observation of the SAD results corresponding to the multilayered film, as illustrated in the
inset of Figure 5b, shows that both a broad halo and bright γ-Ni (111) diffraction ring are
observed, verifying the coexistence of amorphous and nanocrystalline structures of the
Ni/Ni3Al-MoW, multilayered with the induction of more layer interfaces at a smaller h.
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Figure 5. The representative cross-sectional bright fields (BF) TEM image: (a) h = 40 nm; (b) h = 10 nm,
and corresponding selected area electron diffraction results of Ni/Ni3Al-MoW multilayers are shown
in the inset.

Figure 6a shows that the twins are displayed in a region between the space of the
two adjacent layer interfaces of the 40 nm Ni/Ni3Al-MoW multilayer. By the fast Fourier
transformation of the squared region marked A near the nano-twins in Figure 6a, it can be
found that the lattice fringes are interpreted as the γ-Ni-based solid solution phase, and the
twin planes are mainly γ (111) with an angle between them of 118◦. The formation of the
twins within the 40 nm Ni/Ni3Al-MoW multilayer can be attributed to the reduction of the
stacking fault energy (SFE). Among the many kinds of common additive elements in Ni-
based alloys, Mo and W are two of the most effective alloying elements to reduce the SFE in
Ni [45]. Thus, the SFE is significantly reduced, and it promoted the formation of nano-twins
with the co-alloying of the Mo and W elements in the Ni/Ni3Al multilayer with h = 40 nm.
Meanwhile, the sputtering Ni/Ni3Al multilayers with the Mo-W dopant can also improve
the deposition rates of the films, leading to further facilitating the formation of nano-twins.
When h =10 nm, the arrangement of lattice fringes in the Ni/Ni3Al multilayers is relatively
disordered, as demonstrated in Figure 6b, showing a strong tendency for amorphization.
The γ-Ni-based solid solution phase is also verified by the fast Fourier transform result of
the square B region with a crystalline domain. The lack of twins is observed in the HRTEM
of the 10 nm Ni/Ni3Al-MoW multilayer. It is reported that the alleviated coherency stress
can determine the formation of twins [46,47]. In order to generate the nuclei of the twin
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interface, a leading partial dislocation must be emitted within the region of the grain
boundary, which has high-density dislocations. Then, a twinning partial dislocation of
the same Burgers vector on the adjacent slip plane is released. Subsequently, a series
of atoms near the nucleation are stacked continuously along the direction of the two
partial dislocations to increase the size of the twins. A critical hp for the multilayered film
is required for the basic stacking size of nucleation and growth during the nano-twins
formation. In this case, when the coherent elastic strain energy, caused by the coherent
mismatch, is equal to the tension of the leading dislocation line, the critical hp for the
nano-twin nucleation and growth in the Ni/Ni3Al-MoW multilayer can be calculated
according to the following [48]:

1
2

b2 = f hpbp cos λ · 2(1 + υ)

1− υ
(3)

where b is the Burgers vector of the dislocation with the value of 0.255 nm, according to the
XRD results, and the average Poisson’s ratio υ is 0.33 for the Ni-based-films, and λ is the
angle between the slip plane and the layer interface. For the Ni/Ni3Al-MoW multilayers,
both the layer interface and the slip plane are (111) planes, so the angle of λ between them
is 0. bp is the Burgers vector of the partial dislocation with its numerical value of b/

√
3,

which is equal to 0.146 nm. f is less than 0.5% as the mismatch degree between the Ni-MoW
layers and Ni3Al-MoW layers within the 10 nm Ni/Ni3Al-MoW multilayers, according to
the XRD results in Figure 3a and the HRTEM results in Figure 6b. The critical calculated
hp is 13 nm for considering the multilayered structure. Therefore, when h is greater than
13 nm, sufficient space between the layer interfaces for the atomic stacking of the twin
nucleation is provided within each layer in the Ni/Ni3Al-MoW multilayers. Whereas the
actual h in the 10 nm Ni/Ni3Al-MoW multilayer is less than the critical h of 13 nm, the basic
stacking size is not required for nucleation and growth in the process of twin formation.
Thus, the nano-twins formation is not observed in the Ni/Ni3Al-MoW multilayer with
h = 10 nm.
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Figure 6. The HRTEM images of Ni/Ni3Al-MoW multilayers with varying h: (a) h = 40 nm and
(b) h = 10 nm, and corresponding fast Fourier transformation results of squared regions marked A
and B are shown in the inset of (a,b) respectively.

3.2. Mechanical Properties

The hardness (H) measured by the nano-indentation of the Ni/Ni3Al-MoW multilay-
ers are shown in Figure 7a, and the hardness increments of the multilayers with a decrease
of h are founded. The hardness of the 10 nm Ni/Ni3Al multilayer exhibits an optimal
value of 9.1 ± 0.4 GPa, which is slightly higher than the NiW/NiWAl multilayer with
h = 40 nm in our previous study [35]. Note that the hardness of the multilayer increases
significantly due to an obvious strengthening effect of the lamellar structure, whereas the
strengthening effect of the layered structure with more layer interfaces is limited for the
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Ni/Ni3Al-MoW multilayers with lower than 40 nm. Each layer in the Ni/Ni3Al-MoW mul-
tilayers mainly consists of the γ-Ni-based solid solution phase, with a little discrepancy in
the lattice constant, and thus the shear modulus difference between the Ni-MoW and Ni3Al-
MoW layers is quite small, without the formation of Koehler stress for strengthening [49].
In addition, there is no hole and cracks without a peeling phenomenon for the as-sputtered
multilayers. Consequently, co-deformation is provided between the Ni-MoW and Ni3Al-
MoW layers in the multilayered film during the loading of stress, rendering that the
hardness value of the as-sputtered Ni/Ni3Al-MoW multilayer can be predicted by the rule
of mixing (ROM) in this case [50,51]. On the other hand, due to the Mo and W dopants,
the grain sizes in the films are refined effectively with h ≤ 40 nm. As the dislocations
pile-up around the grain boundaries and layer interfaces, the strengthening effect of the
grain boundary on the hardness increment of the nanocrystalline Ni/Ni3Al-MoW multi-
layers should be considered. Therefore, in terms of the grain refinement of the film com-
bined with the Hall–Petch relationship in the as-sputtered Ni/Ni3Al-MoW-multilayered
film, a modified ROM of the hardness for the Ni-W and Ni3Al-MoW layers is obtained
as the following:

Hmod
ROM = VNi-MoW(HNi-MoW

0 + kNi-MoWd−1/2
Ni-MoW) + VNi3Al-MoW(HNi3Al-MoW

0 + kNi3Al-MoWd−1/2
Ni3Al-MoW) (4)

where H0 is the intrinsic strength of the coarse-grained sample, k is the Hall–Petch slope,
and d is the equivalent grain size of the films with layer interfaces. V is the volume
fraction with VNi-MoW = VNi3Al-MoW = 0.5, and HROM is the hardness of the multilayer.
According to the previous experimental results, the d decreases with a lower h. The
hardness with a value of about 7~8 GPa [52] and 7.8 GPa [53] was used for the as-deposited
monolithic Ni-W film and Ni3Al-W film at a content of 4.5 at.%, respectively, which shows
similar equivalent grain sizes to the Ni/Ni3Al-MoW multilayers with both h = 160 nm and
40 nm. Likewise, the hardness of the Ni-W film and Ni3Al-W film was at a content of
12.5 at.% is 8~9 GPa [52] and 8.5 GPa [53], respectively, due to their similar grain sizes with
the 10 nm Ni/Ni3Al-MoW multilayers. The hardness estimated by the modified ROM of the
hardness with the Hall–Petch relationship matches reasonably well with the experimental
value for the Ni/Ni3Al-MoW multilayer with h = 160 nm. The maximum hardness of
the Ni/Ni3Al-MoW multilayer presents higher than the modified ROM of the hardness
estimations, suggesting that the interface strengthening mechanism described [54–56] as
an effect of the confined layer slip (CLS) of single-dislocation loops within the confined
geometry and interface strength barrier underpinnings of the layer interface for h = 40 nm
and 10 nm, respectively. The low crystallinity with an amorphous constitution is present
in the Ni-MoW and Ni3Al-MoW layers, leading to hardly emitted dislocations from the
GBs with pinning, pre-existing dislocations. The existence of the nano-twin is also benefit
to retard the dislocation slip [45], leading to a slight enhancement of the hardness for
the 40 nm Ni/Ni3Al-MoW multilayer. Therefore, the strengthening mechanism of the
Ni/Ni3Al-MoW multilayers is mainly caused by grain refinement and the existence of
layer interfaces.

Figure 7b shows the curve of the elastic modulus (E) measured by the nano-indentation
of the Ni/Ni3Al-MoW multilayers. Compared with the γ-Ni-based solid solution, the elas-
tic modulus of the amorphous phase is quite inferior [57,58]. Consequently, it can be found
that the elastic modulus of the Ni/Ni3Al-MoW multilayer decreases with a lower h as the
reduction of crystallinity with more amorphous phase existence. This case is similar to
the NiW/NiWAl multilayer in our previous study [35], which showed a smaller value of
151.1 ± 3.4 GPa in the elastic modulus. To be noted is the H/E ratio, which is also called the
elastic strain to break and is related to the fracture toughness of the coating materials [59];
the ratio value of both the Ni/Ni3Al-MoW multilayers with h = 10 nm (0.054) and
h = 40 nm (0.050) is superior to that of the 160 nm Ni/Ni3Al-MoW multilayer (0.042).
This infers that the higher resistance against the fracture for the 10 nm Ni/Ni3Al-MoW
multilayer is due to the enhancement of its toughness with a deflection of the micro-crack
by the increment of layer interfaces [60].
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4. Conclusions

The Ni/Ni3Al-MoW multilayer with h = 10 nm, 40 nm, and 160 nm were prepared
by DC magnetron sputtering, and their microstructures and mechanical properties were
investigated. Based on the obtained results, the following conclusions can be drawn:

(1) All of the Ni/Ni3Al-MoW multilayers exhibited finer globular particles and lower
roughness without micro-cracks and holes in the surface morphologies. The phase
composition of the multilayer was identified as a γ-Ni-based solid solution phase
dominantly, presenting the (111) texture;

(2) With a lower h, the average grain size of the Ni/Ni3Al-MoW multilayers decreased,
and the crystallinity degrees were degraded with the existence of the amorphous
phase structure at a slight amount. In addition, nano-twins were provided with
the (111) twining interfaces, mainly for the 40 nm Ni/Ni3Al-MoW multilayer. The
reduction of the stacking fault energy (SFE) initiated by the co-doping of the Mo and
W elements was deemed as promoting the formation of nano-twins. For the Ni/Ni3Al-
MoW multilayer with h = 10 nm, the nucleation and growth of the nano-twins were
limited without observations due to the actual h being less than the critical thickness
required for providing the stacking of the nano-twins;

(3) The hardness of the multilayer increased with a lower h, and the inhibitions of the
dislocation movements due to both the grain refinements and layer interface barriers
were responsible for the dominant strengthening mechanism. The elastic modulus of
the multilayer decreased with h ≤ 40 nm for the existence of the amorphous phase,
and the superior resistance against the fracture was achieved with a higher H/E ratio
due to toughening via the lamellar structure for the 10 nm Ni/Ni3Al-MoW multilayer.

In conclusion, the Ni/Ni3Al-MoW multilayer with h = 10 nm exhibited improved
mechanical performances.
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