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Abstract: Considering the lack of an effective anti-oxidation protective layer for the oxidation process
of Ti3SiC2, an in situ synthesis of Ti3SiC2 and Al2O3 was designed. Thermally stable Al2O3 was used
to improve the high-temperature oxidation resistance of Ti3SiC2. Samples without TiC were selected
for the oxidation test, and the oxidation morphology and weight gain curves of the oxidized surface
in air at 1400 ◦C are reported. The change in the oxidation behavior occurred 4 h after oxidation.
The addition of Al2O3 changed the composition of the oxide layer and compensated for the lack
of a dense protective layer during Ti3SiC2 oxidation. Moreover, after 4 h of oxidation, the newly
generated Al2TiO5 and the composite layer formed by diffusion were the main reasons for the large
difference in the final weight gain between the two sets of samples.
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1. Introduction

Ceramic is a type of material with unique characteristics, such as high-temperature
oxidation resistance, high strength, and elastic stiffness, but it has inherent brittleness and
low machinability [1–4]. A special group of materials in the ceramic family are the MAX-
phase ceramics, which have a hexagonal structure and combined metal-ceramic properties.
MAX-phase materials have broad application prospects owing to their excellent properties.
However, compared with conventional ceramics, the hardness and high-temperature
oxidation resistance of MAX-phase materials are lower, which significantly limits their
application in the engineering field. Therefore, it is necessary to improve their mechanical
properties and high-temperature stability. Ti3SiC2 is a MAX-phase compound with a
layered structure that is a promising candidate for high-temperature applications [5,6]. In
addition to its simple machinability, this material has excellent properties, such as electrical
conductivity, thermal conductivity, and thermal shock resistance [7,8]. As a typical MAX-
phase material, Ti3SiC2 is a promising structural ceramic for high-temperature applications
such as heating elements in high-temperature furnaces and fuel-combustion components
in automobiles and aircraft engines [9,10].

Notably, the oxidation resistance of Ti3SiC2 is crucial and has been investigated exten-
sively, whether in the application of high-temperature structural ceramics or connection
materials for solid oxide fuel cells. The preferential oxidation behavior of Ti3AlC2 is differ-
ent from that of Ti3SiC2, which has a continuous Al2O3 layer [11–13]. The antioxidation
capacities of Ti3SiC2 require further improvement for its effective application.

Reinforcement phases, including TiC, SiC, c-BN, TiB2, and ZrO2, have been used to
improve the mechanical properties and oxidation resistance of Ti3SiC2 [14–17]. Li et al. [18]
prepared dense SiC/Ti3Si(Al)C2 composites using an in situ hot-pressing sintering method
and reported that the oxide layers formed at 1200 and 1300 ◦C were divided into outer,
middle and inner layers. To obtain high-purity Ti3SiC2, Xu et al. [19] demonstrated that the
incorporation of a small amount of Al was beneficial for improving the purity of Ti3SiC2.
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Moreover, the addition of Al was advantageous for improving the oxidation resistance of
the composites [20,21]. Some researchers believe that the optical and electrical properties
of alumina at high temperature have crucial application value and prospects for fusion
technology [22–24].

Thus, the dense Al2O3 layer formed during the oxidation of Ti3AlC2 is the design
inspiration for this study. Moreover, considering the lack of an effective anti-oxidation
protective layer in the Ti3SiC2 oxidation process, thermally stable Al2O3 is selected as
a reinforcement phase in this study to change the oxidation resistance of Ti3SiC2. A
Ti3SiC2/Al2O3 composite is synthesized in situ using the hot-pressing sintering method,
and the high-temperature oxidation resistance of the composite is reported. Therefore, this
study aims to present a detailed investigation of the high-temperature oxidation resistance
of Ti3SiC2/Al2O3.

2. Experimental Procedure

The volume capacity of 30%, 40% and 50% Al2O3 were added and the powders of
Ti:Si:TiC:Al in the molar ratio of 1:1.2:2:0.3 were used to synthesize Ti3SiC2/Al2O3 compos-
ites. In situ synthesis of Ti3SiC2 and Al2O3 was designed, namely TSC70 (Ti3SiC2/30 vol.%
Al2O3), TSC60 (Ti3SiC2/40 vol.% Al2O3), TSC50(Ti3SiC2/50 vol.% Al2O3). TiC (99.9% pu-
rity, average particle size 1 µm, Shanghai ST-Nano Technology Co., Ltd., Shanghai, China),
Ti (99.9% purity, average particle size 1–3 µm, Shanghai ST-Nano Technology Co., Ltd.,
Shanghai, China), Al (99.9% purity, average particle size 50 nm, Shanghai ST-Nano Tech-
nology Co., Ltd., Shanghai, China), Si (99.9% purity, average particle size 1 µm, Shanghai
ST-Nano Technology Co., Ltd., Shanghai, China) and Al2O3 (99.9% purity, average particle
size 30 nm, Shanghai ST-Nano Technology Co., Ltd., Shanghai, China) were used as raw
materials. The original powders were mixed into ethanol by ball-milling for 4 h. Then the
slurry was dried in a drying oven at 40 ◦C for 6 h and then sieved under 100 mesh. The
Ti3SiC2/Al2O3 composites were in situ fabricated by vacuum hot-press sintering (VVPgr-
80-2200, Shanghai, China) at 1450 ◦C with an applied pressure of 30 MPa for 1.5 h (the
vacuum degree was 6.71 × 10−3 MPa).

For the oxidation experiments, rectangular blocks of size 5 mm × 4 mm × 4 mm were
cut using a cylindrical SiC blade. The surface was polished with SiC paper. Thereafter, the
samples were ultrasonically cleaned with ethanol to remove surface impurities. Oxidation
tests was carried out in an alumina tube furnace at 1400 ◦C and the samples were exposed
for up to 20 h. After the alumina tube furnace was heated to the test temperature, the block
Ti3SiC2/Al2O3 composites to be tested were placed in the furnace. Using an electronic
balance of accuracy 1 × 10−7 kg, the difference in weight gain was calculated.

X-ray diffraction (XRD) (D8 ADVANCE, Bruker, Saarbrucken, Germany) was used to
confirm the phases of the samples before and after oxidation. The microstructure of the
oxidized samples was observed by scanning electron microscopy (SEM) (FEI QUANTA
FEG 250, Hillsboro, OR, USA) with energy dispersive X-ray spectrum (EDS).

3. Results and Discussion

The phase components of the Ti3SiC2/Al2O3 composite were characterized by X-ray
diffraction (XRD). Figure 1 shows the XRD patterns of TSC70, TSC60 and TSC50 before
oxidation. As shown in Figure 1, Ti3SiC2 and Al2O3 did not generate Ti–Al compounds,
indicating that the composite degree between Ti3SiC2 and Al2O3 was appropriate. This
plays an important role in the subsequent investigation of the high-temperature oxidation
resistance of the Ti3SiC2/Al2O3 composite. Notably, several TiC peaks were observed in
TSC70, but none were detected in TSC50 and TSC60. Under the same sintering conditions,
the peak intensities of Al2O3 increased with increasing Al2O3 content, corresponding with
the change in the volumetric fraction added during synthesis. This phenomenon indicates
that the selection of the raw material was successful. Sun et al. [25] reported that the
oxidation rate of Ti3SiC2 is slower than that of TiC, and TiC is detrimental to the oxidation
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resistance of Ti3SiC2. Therefore, in the subsequent experiments, two sets of samples without
TiC were selected for the oxidation test.
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Figure 1. X-ray diffraction patterns of non-oxidizing materials: (a) TSC70, (b) TSC60 and (c) TSC50.

Figures 2 and 3 show the XRD patterns of the TSC50 and TSC60 samples, respectively,
oxidized at 1400 ◦C. After the oxidation of TSC50 for up to 4 h, XRD showed that the TiO2
content was relatively low. The presence of matrix Ti3SiC2 and Al2O3 was caused by the
short oxidation time, and a dense and continuous oxide layer was not formed. Thus, the
exposure of the matrix to the surface was accompanied by a small amount of TiO2. In
contrast to TSC50, the oxidation products of TSC60 with less Al2O3 were different after 4 h
of oxidation. The intensity of the Ti3SiC2 peaks in TSC60 were significantly reduced, and
the oxidized surface was mainly composed of TiO2, Al2O3, and newly generated Al2TiO5,
indicating that a continuous and thin oxide layer was formed on the sample surface.
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Figure 3. X-ray diffraction patterns of the TSC60 (a) before oxidation and (b) after oxidation at 1400 ◦C
for 4 h.

As shown in Figure 4, the scanning electron microscopy (SEM) results show the surface
morphology of the oxide layer after the oxidation of TSC50 and TSC60 for 4 h. Ti3SiC2
and Al2O3 remained on the surface of the TSC50 oxide layer. The morphology of the
grains was massive and layered, and the pores were clearly observed. After oxidation,
some grains were aggregated, which indicates oxide layer growth. The newly generated
TiO2 was connected to Ti3SiC2 with an evident layered structure, indicating its tendency
to encapsulate Ti3SiC2. Conversely, after the oxidation of TSC60, the grain morphology
on the oxide layer surface did not exhibit a lamellar structure. Although the grain size
on the oxide layer surface of TSC60 was larger than that of TSC50, the grain morphology
of TSC50 was more regular with a more distinct orientation. Stomata were observed on
the surface of TSC50, and these pores may serve as channels for oxygen diffusion into the
matrix. Compared with the sparsely oxidized surface of TSC50, TSC60 exhibited a state of
mutual fusion and airtightness among the grains. Moreover, the fusion boundary of TSC60
could be clearly observed. Trace pores and cracks were observed on the oxidized surface of
TSC60. The cause of the cracks may be the short oxidation time and the incomplete growth
of the oxide layer. The difference in the oxidized surface morphology may be owing to
the variation in the Al2O3 contents, which causes different degrees of oxidation between
oxygen and Ti3SiC2 during the oxidation process.
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Figures 5 and 6 show the surface morphology and energy dispersive X-ray spec-
troscopy (EDS) results of TSC50 and TSC60 after 4h of oxidation. The oxidized surface
formed a well-shaped crystal. EDS analysis indicated that the dense massive crystals on
the oxidized surface of TSC50 (Figure 5) mainly contained Ti, Al, and O. Based on the types
of elements and grain structures observed, the main components observed at points 1 and
2 in Figure 5 were identified as Al2O3 and TiO2. Moreover, Si was not detected, indicating
that SiO2 was not present on the oxidized surface. Furthermore, a minor difference in the
contents of Ti and Al was observed. Additionally, Figure 6 shows two types of crystal
morphologies, in which the content of Al (the flat grain identified by point 1) was much
higher than that of Ti. Based on the XRD results, the oxidized surface of TSC60 contained a
small amount of Al2TiO5. Aluminium titanate has a plate-titanite-type crystal morphology
with typical plate-like and blade-like crystals. Therefore, the grain indicated at point 1 in
Figure 6 is proposed to be Al2TiO5. Simultaneously, the grain indicated at point 2 had a
higher content of elemental Ti and appeared columnar, which is consistent with the crystal
structure of rutile. Therefore, the EDS results were in good agreement with the XRD results.
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Figure 7 shows the change in the weight gain per unit area of the two composites over
time at a temperature of 1400 ◦C. During the oxidation period of 0–4 h, the weight gain
per unit area decreased with the increasing Al2O3 content in the composites. However,
when the oxidation time exceeded 4 h, the weight gain per unit area increased with the
increasing Al2O3 content. With increasing time, the weight gain of TSC60 stabilized,
indicating that TSC60 had transformed after 4 h of oxidation, thus reducing the degree
of the subsequent oxidation processes. After 20 h of oxidation, the weight gain of TSC50
was 42.253 × 10−3 kg/m2, whereas that of TSC60 was 29.411 × 10−3 kg/m2, which is
approximately 70% of the former. According to the XRD and EDS results, a mixed layer of
Al2TiO5 and TiO2 formed on the surface of TSC60 after 4 h of oxidation. Therefore, it is
proposed that the presence of a mixed layer effectively reduces the rate of the subsequent
oxidation of the composites. As a material with good thermal shock resistance and excellent
high-temperature stability, Al2TiO5 played a significant role in reducing the oxidation rate
of Ti3SiC2/Al2O3 in this study.
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As discussed, pores and cracks were present on the oxidized surface of Ti3SiC2/Al2O3,
providing a diffusion channel for oxygen. Therefore, the oxidation of Ti3SiC2/Al2O3 was a
diffusion-controlled process. Moreover, the oxidation of Ti3SiC2 was caused by the outward
diffusion of Ti, Si and carbon, and the inward diffusion of oxygen. Although the oxidation
of Ti3SiC2/Al2O3 was a diffusion-controlled process, the addition of Al2O3 changed the
composition of the oxide layer. The cross-section of the oxide layer after 20 h of oxidation is
shown in Figure 8. The thickness of the oxide layer of TSC60 was approximately 253 µm.
Moreover, the oxide layer exhibited a silicone-free outer layer of approximately 40 µm.
Based on the EDS results, the outer layers were clearly composed of Al2TiO5 and TiO2.
The presence of Si in the composite layer was detected, indicating that Si did not undergo
external diffusion when it reached the composite layer, as shown in Figure 9. Thus, SiO2
formed by silicon diffusion, and Al2TiO5 and Al2O3 compounded to form a glass phase,
which increased the compactness of the composite layer and prevented the diffusion of Si
and Ti [26]. As shown in Figure 9, a large amount of TiO2 was present in the Al-deficient
layer. Because the oxygen pressure in the outer layer was higher than that in the inner
layer, Si gave priority to SiO gas generation. As the diffusion process progressed, SiO gas
became a SiO2 barrier that encapsulated TiO2, resulting in a condition of Si enrichment;
therefore, only a small amount of Al was detected [27]. In contrast, TSC50 did not have
dense layers but it also had an Al-deficient layer of approximately 18 µm (Figure 10). At
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elevated temperatures and extended periods, such as 1400 ◦C and 20 h, the oxidation rate
was high. Notably, this temperature is similar to the melting point of Si; thus, Si was more
reactive. The Si content may be one of the reasons for the difference between the TSC60
and TSC50 oxide layers. Owing to its excellent high-temperature stability, Al2O3 did not
decompose at this oxidation temperature; however, it reacted with other oxides to protect
the matrix.
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Based on the above analysis, it is evident that Al2O3 improves the high-temperature
oxidation resistance of Ti3SiC2. Compared with the studies reported by Zhang et al. [28]
and Gao et al. [29], the oxide layer of Ti3SiC2/Al2O3 formed in this study was thinner.
Moreover, the Al2O3 content was one of the factors influencing the oxidation resistance of
the composite. Increasing the Al2O3 content did not always yield positive results. Thus, it
is proposed that an optimal range of Al2O3 content exists, in which the high-temperature
oxidation resistance of Ti3SiC2/Al2O3 is improved. This aspect will be investigated further
in future research studies.

4. Conclusions

The compositional morphology and oxidation kinetics of Ti3SiC2/Al2O3 composites
at 1400 ◦C were investigated in this study. The weight gain of the composite decreased
with an increase in the volumetric content of Al2O3, indicating that Al2O3 addition delays
the oxidation of the composite. However, when the oxidation time exceeded 4 h and
continued until 20 h, the oxidation process accelerated, indicating that 4 h was the limit for
the oxidation stability of the composite. After 4 h of oxidation, at 1400 ◦C, the surface of
the composite with a high volume of Al2O3 exhibited more pores, facilitating the diffusion
of oxygen into the matrix, which may have caused the acceleration of the oxidation process
of the composites during extended periods of oxidation. The presence of Al2TiO5 on the
oxidation surface of the composite with a low volume of Al2O3 may have reduced the rate
of matrix oxidation and hindered the oxidation instability of the composites. Moreover, the
composite oxide layer inhibited the diffusion-controlled process.
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