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Abstract: In order to prevent the lead-bismuth eutectic (LBE) corrosion of stainless-steel components
used in nuclear reactors, the FeCrAlTiC-xY2O3 coatings were prepared on 304 stainless steel (304SS) by
laser cladding. After adding Y2O3, Y2TiO5 and Y2Ti2O7 formed, which have a combined strengthening
effect on improving hardness. The 0.2 wt.% Y2O3 coating showed the highest hardness as ~489 HV. In
the 400 ◦C wear test, the weight loss of coating samples was less than ~5.2 mg, while the weight loss of
304SS samples was ~35.5 mg. The 0 wt.% Y2O3 coating showed the highest wear resistance, indicating
that adding Y2O3 could result in the decrease of wear resistance. The LBE corrosion behaviors of
coatings at 500 ◦C were investigated. The results showed that a uniform and dense oxide scale with a
low growth rate was obtained on the coating surface, and no penetration of LBE into the coating was
observed. After 1000 h of corrosion, the oxide scale of coatings grew to merely a ~0.3 µm thickness.
The corrosion resistance mechanism of the coating in oxygen-saturated LBE at 500 ◦C was proposed
based on experimental results along with a thermodynamic and kinetic analysis.

Keywords: FeCrAlTiC-Y2O3 coating; laser cladding; lead-bismuth eutectic; corrosion

1. Introduction

Lead-bismuth eutectic (LBE) alloy is viewed as a primary expecting material for
coolant in an accelerator driven sub-critical system (ADS) [1]. The commonly used struc-
tural materials, such as F/M steel and austenite steel, could be easily corroded by the LBE,
leading to the failure of reactor system [2–4]. According to previous studies, liquid metal
corrosion (LMC) mainly includes dissolution corrosion, oxidation corrosion, and cavitation
erosion in liquid LBE [5,6]. Apart from the LMC, liquid metal embrittlement (LME) would
lead to the failure of materials [7,8]. Therefore, it still remains a great challenge in finding
effective protective methods.

To improve the LBE corrosion resistance of structural steels, a general strategy is to fab-
ricate a protective coating on the steel surface. Coatings made of refractory metals, such as
W, Mo, and their alloys, could increase the resistance to the dissolution corrosion because of
their low solubilities in liquid LBE [9]. However, these refractory metals form unstable and
even volatile oxides for their poor resistance to oxidation corrosion in liquid LBE [10,11]. It
makes the deposition of refractory metal coating a challenge. Candidate ceramic coating
materials comprise oxides, carbides, and Max phases. Research has demonstrated the
excellent resistance to oxidation corrosion in liquid LBE [12–15]. However, ceramic coatings
are generally brittle, resulting in cracking and spallation under certainly applied loads [16].
Ceramic coatings lack self-healing after cracking somehow. Another method is to add oxide
formation elements such as Al and Ti into the structural materials. Recent works reported
that the functional composition (alloying elements, Al, etc.) would exert obvious influences
on the density of state distribution, bonding states, and surface separation energy, which
determine the interaction between coatings and substrate [17,18]. Additionally, Ti may
affect the composition and distribution of Cu-based solid solutions in some corresponding
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coating materials, enhancing the mechanical performance of substrate [19]. In an environ-
ment with a certain amount of oxygen, Al-containing coatings can generate dense, thin,
and self-healing oxide scales on the surface. Several FeAl or FeCrAl alloy coatings were
deposited on the steel surface, showing an impressive resistance to the LBE oxidation
corrosion [20–23]. However, it remains a challenge to develop a novel coating that could
serve under aggressive environments and provide protection for the structural materials
applied in ADS. For instance, there are significantly different mechanical or thermophysical
properties between oxide and alloy coatings. In flowing LBE, the oxide/coating interface
is easy to fracture and fail under the thermal-mechanical coupled effect, reducing the
equipment’s lifetime [24,25]. Thus, improving the hardness and toughness of coatings is a
main issue to be solved.

To strengthen LBE corrosion resistance, a general way is adding carbides to coatings,
e.g., TiC or WC [26–28]. However, this may lead to a serious segregation of carbides in the
coatings, resulting in an increase of crack sensitivity [29]. In order to deal with such prob-
lems, synthesizing in situ TiC during laser processing was proposed. The distribution of
TiC would be relatively homogeneous and effectively strengthen the wear resistance [30,31].
Another way is adding rare earth oxide, such as Y2O3 and Ce2O3. Recent research demon-
strated that the coatings would show impressive improvement on toughness after adding
such rare earth oxides [32–34]. Moreover, some research indicated that Y2O3 may react
with Ti into Y-, Ti-, O- enriched clusters such as Y2TiO5 and Y2Ti2O7 [35–37].

In order to provide knowledge about the LBE corrosion resistance of composite coating,
five kinds of FeCrAlTiC-xY2O3 coatings were prepared on a 304SS surface by laser cladding
in this work, and their corrosion behaviors in static oxygen-saturated LBE at 500 ◦C were
studied. By investigating the corrosion characteristic of the surface and cross-section, the
corrosion mechanism of the as-prepared coating is revealed.

2. Materials and Methods
2.1. Preparation of Powder and Coating

FeCrAlTiC-xY2O3 laser clad powders were blended from the powder of Ti
(purity ≥99.99%, Avimetal powder metallurgy technology Co., Ltd., Beijing, China), FeCr
(Cr 60 wt.%, C 7~8 wt.%, Fe bal., Nangong Xindun Alloy Welding Consumables Spraying
Co., Ltd., Xingtai, China), FeAl (Al 50 wt.%, Fe 50 wt.%, Nangong Xindun Alloy Welding
Consumables Spraying Co., Ltd., Xingtai, China), and nano-Y2O3 (purity ≥99.999%, Jinlei
Technology Co., Ltd., Ningbo, China). Five groups of powders were prepared, and the
detailed compositions are listed in Table 1. The powders were mixed by a high-energy
planetary ball milling (Changsha Miqi Instrument Technology Co., Ltd., Changsha, China)
operated at 180 rpm using 304SS vials (vacuum atmosphere) and 304SS balls (the ball-
to-powder weight ratio of 1:1) for up to a cumulative period of 20 h (with intermittent
intervals of 5 min per 30 min). Before laser cladding, the powders were dried in a vacuum
stove at 120 ◦C for 2 h. Then, the powders compacted by an automatic table press were
preplaced on the 304SS surface.

Table 1. Chemical composition of the mixed powders (wt.%).

No. Cr Al Ti C Y2O3 Fe

1 24 20 20 2.8 0 Bal.
2 24 20 20 2.8 0.2 Bal.
3 24 20 20 2.8 0.5 Bal.
4 24 20 20 2.8 0.8 Bal.
5 24 20 20 2.8 1.0 Bal.

An Afs-R6000 laser material processing system was employed to fabricate the coating
with argon protection, as shown in Figure 1. The laser cladding parameters determined by
pre-orthogonal experiments were as follows: a laser power of 2200 W, a scanning velocity
of 5 mm/s, and an overlapping rate of 50%.
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Figure 1. Diagram and appearance of laser cladding. (a) The laser cladding equipment and the
prepared coating; (b) Afs-R6000 laser material processing system.

2.2. Micro-Hardness and 400 ◦C Wear Test

A Vickers hardness tester (FM-ARS900, SURTTZ Instrument Co., Ltd., Shanghai,
China) was employed to test the microhardness of samples at intervals of 0.07 mm. The
wear tests were carried out using a friction and wear tester (MMU-5GA, Jinan Yihua
Tribology Testing Technology Co., Ltd., Jinan, China). The test method determined the wear
of materials during sliding using a pin-on-disk apparatus. Five kinds of the coatings with
different Y2O3 additions and 304SS were machined into pin specimens with dimensions of
Ø 4.64 mm × 10.50 mm. The size of the grinding disk was Ø 53.6 mm × 7.9 mm, and the
hardness was 60–62 HRC. Figure 2 shows the schematic of the wear test. The parameters
of the wear test were as follows: load of 150 N, temperature of 400 ◦C, linear velocity of
0.188 m/s, and wear time of 60 min. For evaluating the wear performance, the weight loss
of the pin was measured by an electronic balance with an accuracy of 0.1 mg.
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Figure 2. The schematic of the wear test. Where R is the wear track radius, F is the normal force on
the pin, and ω is the rotation velocity of the disk.

2.3. LBE Corrosion Test

The FeCrAlTiC-xY2O3 coatings were fabricated into specimens with dimensions of
20 mm× 10 mm× 10 mm for LBE corrosion. Then, surfaces of the specimens were polished
with SiC paper up to 400 grits. Static LBE corrosion tests were conducted in a vacuum
resistance furnace (with pressure −0.1 Pa) containing LBE at 500 ◦C. At 500 ◦C, the oxygen
concentration co (wt.%) in the oxygen-saturated LBE was calculated to be 6.3 × 10−4 wt.%
according to Equation (1) [1]:

log co = 1.2− 3400/T (1)

where T is the temperature (K).
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2.4. Characterization

The constituent phases of the FeCrAlTiC-xY2O3 coatings were investigated by an X-ray
diffraction (XRD, Bruker D8 Advance, Bruker Co., Berlin, Germany). The cross-section
of coatings was polished with SiC paper up to 1500 grits and 0.5 µm carbide suspension.
After that, all samples were electro-polished by 5% oxalic acid solution at 7.5 V up to 15 s.
The cross-section of samples was characterized by a scanning electron microscopy (SEM,
NovaNamo450, Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with an
Energy Dispersive Spectrometer (EDS, Thermo Fisher Scientific Inc., Waltham, MA, USA).
A transmission electron microscope (TEM, FEI Talos F200X, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) was employed to analyze the composition of the coatings.

After LBE corrosion, the cross-section of 304SS and coatings was prepared by the
usual metallographic techniques. The cross-section morphologies of 304SS and coatings
were studied by SEM. Moreover, an electron probe map analysis (EPMA, EPMA-1720,
SHIMADZU Co., Kyoto, Japan) was employed to show the element distribution in the
coating after 1000 h of LBE corrosion.

X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Thermo Fisher
Scientific Inc., Waltham, MA, USA) was used in this study with the aim of analyzing the
state chemical bonding and elemental composition. The spectrometer was Thermo Scientific
K-Alpha. Before the XPS test, the surface residual LBE of the 0.2 wt.% Y2O3 coating after
1000 h corrosion was removed by a mixed solution (acetic acid:ethyl alcohol:hydrogen
peroxide = 1:1:1). The sample was not sputter-etched prior to analyses. The excitation source
was Al anode (1486.6 eV). The electron emission angle was 60◦. The size of the analyzed
sample area was 400 µm2. The charge neutralizer was used. The base pressure in the analysis
chamber during spectra acquisition was lower than 5.0 × 10−7 mBar. Recent research
indicated that the conventional C 1s peak of adventitious carbon could not reflect the results
of XPS accurately [38–40]. Thus, the calibration and linearity of the binding energy scale
were confirmed by the work function method [41,42]. Work function øSA measurements
by ultraviolet photoelectron spectroscopy (UPS) were performed in the same instrument
with unmonochromatized He I radiation (21.20 eV). A sample bias of −5 V was applied to
observe the secondary electron cutoff. Figure 3 shows the valence band spectra as recorded
from the 0.2 wt.% Y2O3 coating after 1000 h of corrosion. The work function øSA can be
determined as 3.97 eV by the difference between the photon energy and the binding energy
of the secondary cutoff edge. Thus, the binding energy of the C 1s peak could be set at
285.61 eV (289.58 eV−øSA), and all other core-levels shifted accordingly.
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3. Results and Discussions
3.1. Phase Composition and Microstructures of Composite Coating

The XRD pattern of FeCrAlTiC-xY2O3 coatings is presented in Figure 4. The major
phases of the coating without Y2O3 addition are Fe2AlCr (BCC, PDF#54-0387) and TiC
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(FCC, PDF#32-1383). This demonstrates that Fe, Cr, and Al powders generate Fe-Cr-Al
compounds, and TiC is synthesized during laser processing. After adding different contents
of Y2O3, the XRD result of the coatings showed that the characteristic peaks were similar to
the result of the 0 wt.% Y2O3 coating. This indicates that the coatings with Y2O3 mainly
consist of Fe2AlCr and TiC. However, owing to the low content of Y2O3, it is difficult to
distinguish the corresponding composition in coatings by XRD.
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Figure 4. The XRD pattern of FeCrAlTiC-xY2O3 coatings.

Figure 5 shows the SEM images and the corresponding EDS analysis of the coatings.
In Figure 5a, the coating without Y2O3 comprised a Fe2AlCr phase with TiC distributing
at grain boundaries. With the addition of Y2O3, more TiC particles precipitated within
the grains (Figure 5b). Figure 5c reveals the microstructure of the 0.5 wt.% Y2O3 coating.
Some flower-shaped dark phase was observed, indicating the micro-segregation of TiC.
In Figure 5d, TiC segregated at the grain boundary in the 0.8 wt.% Y2O3 coating. When
the content of Y2O3 increased to 1.0 wt.%, the segregation of TiC was further serious at
the grain boundary (Figure 5e). It is obvious that the addition of Y2O3 influenced the
distribution of TiC. However, EDS could not identify element Y because of its low mass
fraction in raw materials.
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Figure 5. SEM microstructures and EDS analysis results of the coatings with different Y2O3 additions:
(a) 0 wt.% and EDS of point A1, A2, (b) 0.2 wt.% and EDS of point B1, B2, (c) 0.5 wt.% and EDS of
point C1, C2, (d) 0.8 wt.% and EDS of point D1, D2, (e) 1.0 wt.% and EDS of point E1, E2.
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Further, to clarify the microstructure, the TEM microstructures and the corresponding
SAD patterns of the cross-section microstructure of coatings with 0 wt.% and 0.2 wt.% Y2O3
are shown in Figure 6. Figure 6a shows the microstructure of the coating without Y2O3.
SAED patterns in Figure 6b,c confirm the presence of TiC and Fe2AlCr. These indicate
that the TiC particles prefer to precipitate at the grain boundaries of the Fe2AlCr matrix
and present as bar-shaped. TiC mainly distributes at the grain boundaries of the matrix,
which relates to the incomplete or complete wetting of grain boundaries [43]. During
solidification, the solid grains are isolated by liquid interlayers. These liquid materials
are enriched with TiC, which solidify and remain solid along the first solidifying grain
boundaries. Therefore, the TiC partially or fully isolated the grains of Fe2AlCr matrix after
solidification. The microstructure of the 0.2 wt.% Y2O3 coating is shown in Figure 6d. The
TiC particles precipitate within the grains after the addition of 0.2 wt.% Y2O3 and prefer to
present as sphere or short-bar. It could be inferred that adding Y2O3 causes the evolution of
TiC. Figure 6e shows the microstructure of a TiC particle in 0.2 wt.% Y2O3 coating. The EDS
result in Figure 6f reveals that element Y exists in TiC particles. Further, in Figure 6g, the
corresponding SAED pattern in the same particle includes diffraction spots from Y2Ti2O7
and Y2TiO5, along with the pattern of TiC. Moreover, according to the HRTEM image
and corresponding fast Fourier transform (FFT) patterns shown in Figure 6h,i, it could be
confirmed that Y2Ti2O7 and Y2TiO5 particles distribute in the TiC, respectively. It is reported
that Y2TiO5 and Y2Ti2O7 could be generated by means of the partial substitution of Y with Ti
in Y2O3 during laser processing [36,37,44]. These Y-Ti oxides could promote the solidification
of materials and lead to the evolution of TiC morphology from bar-shape to short-bar-shape
or sphere. Meanwhile, the fraction of the grain boundaries that were occupied by TiC
decreased because more intragranular TiC precipitated, as shown in Figure 6d.
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3.2. Micro-Hardness and 400 ◦C Wear Test

Figure 7 shows the micro-hardness along the depth direction of the cross-section of
the coatings. Every point in Figure 7 is an average value achieved from five indentations.
It was found that the 0.2 wt.% Y2O3 coating had the highest hardness of ~489 HV. For
the other coatings with different Y2O3 additions, the value of micro-hardness was similar
to ~445 HV. The addition of Y2O3 causes the microstructure evolution, resulting in the
change of hardness [45]. For the 0 wt.% Y2O3 coating, the existence of TiC cause the
secondary phase strengthening effectively. After adding 0.2 wt.% Y2O3, the microstructure
and distribution of TiC was refined, as shown in Figures 5 and 6. With more TiC distributing
intragranular, the ratio of fully wetted grain boundaries declined, reducing the isolation
of the matrix and strengthening the effect of secondary phase strengthening. Moreover,
according to the strengthening mechanism revealed by Hu [46], Y2Ti2O7 and Y2TiO5 can
efficiently purify impurity oxygen at the grain boundaries and coordinate the secondary
phases. Thus, the hardness of the 0.2 wt.% Y2O3 coating increases. When more than
0.5 wt.% Y2O3 was added, the segregation of TiC caused the descending of micro-hardness.

Coatings 2022, 12, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 7. The effects of different Y2O3 additions on the micro-hardness of coatings. 

Figure 8 exhibits the weight loss and coefficients of friction of the samples. According 
to the weight loss shown in Figure 8a, it was found that the values of the weight loss of 
coatings were much lower than that of 304SS, indicating a higher wear resistance of coat-
ings than 304SS. Figure 8b shows the friction coefficient of the samples. Friction coefficient 
is a key factor indicating the wear resistance of materials. For the coatings, it was found 
that weight loss had the same tendency as the friction coefficient, namely higher friction 
coefficient induces greater weight loss. Compared to the coating without Y2O3, the addi-
tion of Y2O3 caused the decrease of wear resistance. Meanwhile, with the increase of Y2O3 
content in the coating, the wear resistance was gradually reduced. 

 
Figure 8. The results of 400 °C wear tests of the coatings and substrate: (a) weight loss; (b) average 
coefficient of friction. 

Figure 9 shows the SEM images of the worn surface morphologies. In Figure 9a, the 
worn surface of the 0 wt.% Y2O3 coating is smooth, and the small powder-like wear debris 
is dispersed. Additionally, there were numerous shallow grooves. This indicates that the 
coating without Y2O3 mainly followed a typical abrasive wear pattern. Figure 9b shows 
an abrasive worn surface with more wear debris, indicating an abrasive wear pattern of 
the 0.2 wt.% Y2O3 coating. When content of Y2O3 increase to 0.5 wt.%, more cracks and 
debris appeared due to the micro-segregation in the coating (Figure 9c). In the coating 
with 0.8 wt.% Y2O3, apart from more wear debris and cracks, bulk-like spalls were found 
(Figure 9d). Since the segregation of TiC became more serious, the coating with 1 wt.% 
Y2O3 presented numerous bulk-like spalls with bigger sizes, as shown in Figure 9e. The 
304SS showed deeper scratches and had a large amount of materials peeling. Thus, the 
stress concentration at the wear interface was exacerbated, decreasing the stability of the 
coating performance. TiC could improve the bonding strength of the coating and prevent 
peeling. However, for the 0.2 wt.% Y2O3 coating, during the reciprocating sliding process 
against the grinding disk, more materials of the disk were extruded and rolled into 

Figure 7. The effects of different Y2O3 additions on the micro-hardness of coatings.

Figure 8 exhibits the weight loss and coefficients of friction of the samples. According
to the weight loss shown in Figure 8a, it was found that the values of the weight loss of
coatings were much lower than that of 304SS, indicating a higher wear resistance of coatings
than 304SS. Figure 8b shows the friction coefficient of the samples. Friction coefficient is
a key factor indicating the wear resistance of materials. For the coatings, it was found
that weight loss had the same tendency as the friction coefficient, namely higher friction
coefficient induces greater weight loss. Compared to the coating without Y2O3, the addition
of Y2O3 caused the decrease of wear resistance. Meanwhile, with the increase of Y2O3
content in the coating, the wear resistance was gradually reduced.
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Figure 9 shows the SEM images of the worn surface morphologies. In Figure 9a, the
worn surface of the 0 wt.% Y2O3 coating is smooth, and the small powder-like wear debris
is dispersed. Additionally, there were numerous shallow grooves. This indicates that the
coating without Y2O3 mainly followed a typical abrasive wear pattern. Figure 9b shows
an abrasive worn surface with more wear debris, indicating an abrasive wear pattern of
the 0.2 wt.% Y2O3 coating. When content of Y2O3 increase to 0.5 wt.%, more cracks and
debris appeared due to the micro-segregation in the coating (Figure 9c). In the coating
with 0.8 wt.% Y2O3, apart from more wear debris and cracks, bulk-like spalls were found
(Figure 9d). Since the segregation of TiC became more serious, the coating with 1 wt.% Y2O3
presented numerous bulk-like spalls with bigger sizes, as shown in Figure 9e. The 304SS
showed deeper scratches and had a large amount of materials peeling. Thus, the stress
concentration at the wear interface was exacerbated, decreasing the stability of the coating
performance. TiC could improve the bonding strength of the coating and prevent peeling.
However, for the 0.2 wt.% Y2O3 coating, during the reciprocating sliding process against
the grinding disk, more materials of the disk were extruded and rolled into powder-like
abrasive particles due to the higher hardness [47]. When the content of Y2O3 increased to
more than 0.5 wt.%, the segregation of TiC promoted the crack sensitivity and induced the
toughness of coating. Thus, the wear resistance of the coating decreased. Compared with
coating samples, a lower value of hardness of 304SS led to more materials being peeled off,
indicating its poor wear resistance.
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3.3. Corrosion Behavior in Static LBE at 500 ◦C

To investigate the corrosion resistance of the FeCrAlTiC-xY2O3 coating, 304SS and
the coating specimens were immersed in the same LBE conditions. Figure 10 illustrates
the cross-section of the specimens after corrosion for 500 and 1000 h. The oxide scale on
the coatings were estimated to be ~0.2 µm in the first 500 h. After 1000 h of corrosion, the
thickness of the oxide scale increased to a merely average ~0.3 µm. This illustrates that the
oxide scale on the coating surface could keep stabilization and effectively protect substrate
from the LBE corrosion. When comparing the coatings with different Y2O3 additions, no
obvious differences of the oxide thickness were observed. This indicates that the Y2O3
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addition showed less influence on the corrosion resistance in static LBE. For the 304SS
surface in Figure 10l, an oxide scale grew to ~10.4 µm after 1000 h of exposure in the static
LBE, which could be determined as (Fe,Cr)3O4 [2,3,48]. After 1000 h of corrosion, the
oxide scale of 304SS grew to an average ~10.4 µm. Compared with 304SS, the coating with
different Y2O3 exhibited better resistance to the LBE corrosion.
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tion of XPS spectra revealed typical C 1s, O 1s, Al 2p, Fe 2p, and Ti 2p peaks from 0.2 wt.% 

Figure 10. The SEM and EDS analysis results of the specimen cross-sections after LBE corrosion:
(a) 0 wt.% Y2O3 coating after 500 h corrosion; (b) 0 wt.% Y2O3 coating after 1000 h corrosion;
(c) 0.2 wt.% Y2O3 coating after 500 h corrosion; (d) 0.2 wt.% Y2O3 coating after 1000 h corrosion;
(e) 0.5 wt.% Y2O3 coating after 500 h corrosion; (f) 0.5 wt.% Y2O3 coating after 1000 h corrosion;
(g) 0.8 wt.% Y2O3 coating after 500 h corrosion; (h) 0.8 wt.% Y2O3 coating after 1000 h corrosion;
(i) 1.0 wt.% Y2O3 coating after 500 h corrosion; (j) 1.0 wt.% Y2O3 coating after 1000 h corrosion;
(k) 304SS after 500 h corrosion; (l) 304SS after 1000 h corrosion.
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To clarify the composition of the oxide scale on the coating surface, XPS was adopted
on the 0.2 wt.% Y2O3 coating surface, as shown in Figure 11. In Figure 11a, the investigation
of XPS spectra revealed typical C 1s, O 1s, Al 2p, Fe 2p, and Ti 2p peaks from 0.2 wt.%
Y2O3 coating surface. Additionally, Bi 4f, Pb 4d, Pb 4p, and Pb 4f peaks from residual
LBE were found. The C 1s spectra, as shown in Figure 11b, had peaks at 285.6, 287.0, and
289.2 eV, signifying C-C/C-H, C-O/Al-O, and O-C=O, respectively. The presence of
C-C/C-H, O-C=O bonds might result from using a mixed solution for removing residual
LBE. The O 1s peak in Figure 11c can be resolved into three peaks with binding energies of
530.1 eV (Ti-O/Fe-O), 531.8 eV (C=O), and 533.0 eV (C-O). The Al 2p spectra In Figure 11d
had peaks at 74.4 eV, demonstrating Al-O from Al2O3. In Figure 5c, each Fe 2p region
spectrum consisted of a 2p3/2–Fe 2p1/2 doublet with a difference of 13.2 eV. The peaks
at 711.1 and 724.3 eV correspond to the Fe 2p3/2–Fe 2p1/2 doublet from the Fe2O3. The
second set of spin-split peaks of the Fe 2p3/2 and Fe 2p1/2 components at 709.8 and
723.0 eV presented the formation of FeO. In Figure 11f, the Ti 2p doublet is shown at
458.5 and 464.3 eV with an energy difference of 5.8 eV corresponding to the Ti 2p3/2–Ti
2p1/2, demonstrating the presence of TiO2. XPS results indicate that the composition of the
oxide scale on the coating surface were mainly Al2O3, Fe3O4, and TiO2.
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Figure 12 shows the EPMA results of the cross-section of the 0.2 wt.% Y2O3 coating.
The SEM images of the tested area are shown in Figure 12a. There is no Pb or Bi penetrating
the coating, demonstrating that the coating can strongly prevent LBE penetration by the
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oxide scale formed on the surface, as shown in Figure 12b,c. Several Cr enrichments were
observed below the oxide scale in Figure 12g. Oxides of Al and Fe were further confirmed
to be the main composition of the oxide scale by EPMA (Figure 12d,f,h). EPMA results show
Ti enrichments near the interface of the oxide/coating, as seen in Figure 12e. Combined
with the XPS results, these zones could be TiO2, which was obtained by the oxidation of
TiC exposed to LBE. This TiO2 could inhibit oxidation, as shown in Figure 12.
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3.4. Corrosion Resistance Mechanism of Coating in Static LBE at 500 ◦C

According to the analysis results mentioned above, the corrosion mechanism of the
coating in static LBE at 500 ◦C could be concluded as shown in Figure 13.
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Figure 13. Corrosion mechanism of the coating in the static LBE at 500 ◦C. (a) the origin of corrosion;
(b) the first oxidation; (c) the oxidation of Fe-Cr spinel oxides and TiC; (d) the Cr enrichment.

The corrosion mechanism of the Fe2AlCr phase could be defined as that of ternary
Fe-Cr-Al alloys, which have been known for a long time. Fe-Cr-Al alloys have the tendency
to form complex oxide scales after being exposed to LBE corrosion, and the stability of the
Al-oxide plays a key role in the protection mechanism [23,49]. To clarify the LBE corrosion
resistance mechanism of the coatings, the Gibbs formation energy of probable oxides at
500 ◦C were calculated and are listed in Table 2. The Gibbs formation energy of various
oxides can be expressed as follows:

∆ f GΘ
m = ∆ f HΘ

m − T∆ f SΘ
m (numb.) (2)

where ∆ f GΘ
m is the standard Gibbs energy of formation, ∆ f HΘ

m is the standard enthalpy of
formation, T is the reaction temperature (K), and ∆ f SΘ

m is the standard entropy of formation.

Table 2. Values of ∆ f GΘ
m , ∆ f HΘ

m , and ∆ f SΘ
m in the Gibbs formation energy expressions (T = 773.15 K).

Compound ∆fHΘ
m (kJ/mol) ∆fSΘ

m (J/mol·K) ∆fGΘ
m (kJ/mol)

Al2O3 −1115.8 −207.6 −995.3
TiO2 −941.0 −178.6 −802.9

Cr2O3 −750.4 −169.8 −619.1
Fe3O4 −547.1 −153.1 −428.7
Fe2O3 −541.1 −168.7 −410.6

The values in Table 2 indicate that ∆ rGΘ
Al2O3

< ∆ rGΘ
TiO2

< ∆ rGΘ
Cr2O3

< ∆ rGΘ
Fe3O4

<

∆ rGΘ
Fe2O3

at 500 ◦C. Therefore, in this research, it was determined that Al2O3 was priorly
formed on the exposed coating, and, following that, Fe-Cr spinel oxides grew (Figure 13a,b).
The consequence showed that the oxidation of Cr is thermodynamically preferred compared
to that of Fe. Previous research confirmed that the diffusion coefficient of Fe is much higher
than that of the Cr in Fe-Cr spinel oxides [50,51]. Thus, a Fe3O4 layer would form and cover
the surface of Fe-Cr spinel oxides (Figure 13c). As the corrosion period prolonged, a large
amount of Fe would diffuse along the grain boundaries and transfer into Fe3O4. This leads
to Cr presenting several Cr enrichments around grain boundaries below the oxide scales
(Figure 13d). Therefore, oxide scales on the coating surface mainly contain Al2O3 and Fe3O4.
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When corrosion continues, TiC particles distributed in coatings are exposed to LBE,
which leads to a different pattern of the corrosion mechanism (Figure 13a). Shi et al. ex-
plained the probable oxidation reaction of TiC in the oxygen-saturated LBE as follows [52]:

TiC + 2PbO→ TiO2 + 2Pb + C (3)

The Gibbs reaction energy for the standard state for Equation (3) was evaluated
at −343.5 kJ/mol, indicating that the oxidation of TiC into the TiO2 was spontaneous
under the 500 ◦C static LBE. Combined with the XPS results, the exposed TiC particles
was totally oxidized into TiO2 (Figure 13b). C produced in oxidation floated away and
dissolved in the liquid LBE. Then, the growth of Fe-Cr spinel oxides on the exposed surface
was inhibited because of the formation of Al2O3/TiO2 oxide (Figure 13c). As corrosion
continued, the Fe-Cr spinel oxides around Al2O3/TiO2 were entirely oxidized into Fe3O4,
while the remaining Cr presented as Cr enrichment zones as mentioned above. Then,
Al2O3/TiO2/Fe3O4 mixture oxides were formed on the coating surface (Figure 12d).

4. Conclusions

FeCrAlTiC-xY2O3 laser clad coatings (x = 0 wt.%, 0.2 wt.%, 0.5 wt.%, 0.8 wt.%, and
1.0 wt.%) were fabricated. The micro-hardness, wear resistance, and corrosion resistance in
static LBE at 500 ◦C of the coatings and 304SS were tested and comprehensively compared.
The following conclusions were obtained:

(1) The main phases of FeCrAlTiC-xY2O3 coatings mainly were Fe2AlCr and TiC
phases. After adding Y2O3, the Y2Ti2O7 and Y2TiO5 were formed and could change the
TiC into a sphere shape. When the content of Y2O3 exceeded 0.5 wt.%, serious segregation
of TiC occurred.

(2) The coatings with 0.2 wt.% Y2O3 addition showed the highest micro-hardness, due
to its homogeneous distribution of secondary phases. Compared with the coatings without
Y2O3, the hardness of the 0.2 wt.% Y2O3 coating increased by 9.8%.

(3) The 0 wt.% Y2O3 coating showed the highest wear resistance. With the addition of
0.2 wt.% Y2O3, the influence of abrasive wear was increased, resulting in the decrease of
wear resistance. When the content of Y2O3 was more than 0.5 wt.%, the wear resistance of
the coating was induced due to the decrease in toughness caused by the segregation of TiC.

(4) The improved LBE corrosion resistance of the coatings could be attributed to the
generation of a dense oxide scale on material surface. The oxide scale formed on the coating
surface comprised Al2O3, TiO2, and Fe3O4. The addition of Y2O3 had no obvious influence
on the corrosion resistance of coatings in static LBE.
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