Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytic Model
2.2. Model Geometry and Material Properties
2.3. Meshing
2.4. Boundary Condition and Load
3. Result and Discussion
3.1. Max Principal Stress in Laminated Coating with Different Layout, Number of Layers and Temperature
3.2. Equivalent Elastic Strain and Neutral Plane in Laminated Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y. Conceptual Design of the China Fusion Power Plant FDS-II. Fusion Eng. Des. 2008, 83, 1683–1689. [Google Scholar] [CrossRef]
- Tanabe, T. Tritium: Fuel of Fusion Reactors; Springer: Tokyo, Japan, 2016. [Google Scholar] [CrossRef]
- Fukada, S.; Oya, Y.; Hatano, Y. Review of Recent Japanese Activities on Tritium Accountability in Fusion Reactors. Fusion Eng. Des. 2016, 113, 231–235. [Google Scholar] [CrossRef]
- Hanchar, D.R.; Kazimi, M.S. A Tritium Permeation Model for Conceptual Fusion Reactor Designs. J. Fusion Energy 1983, 3, 47–61. [Google Scholar] [CrossRef]
- Annals of the ICRP. Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 4 Inhalation Dose Coefficients; ICRP Publication 71; Ann. ICRP: Oxford, UK, 1995. [Google Scholar]
- Smith, D.L.; Konys, J.; Muroga, T.; Evitkhin, V. Development of Coatings for Fusion Power Applications. J. Nucl. Mater. 2002, 307–311, 1314–1322. [Google Scholar] [CrossRef]
- Huang, Q.; Li, C.; Wu, Q.; Liu, S.; Gao, S.; Guo, Z.; Yan, Z.; Huang, B.; Song, Y.; Zhu, Z.; et al. Progress in Development of CLAM Steel and Fabrication of Small TBM in China. J. Nucl. Mater. 2011, 417, 85–88. [Google Scholar] [CrossRef]
- Otsuka, T.; Goto, K.; Yamamoto, A.; Hashizume, K. Effects of Shot-Peening on Permeation and Retention Behaviors of Hydrogen in Alpha Iron. Fusion Eng. Des. 2018, 136, 509–512. [Google Scholar] [CrossRef]
- Yang, H.; Shao, Z.; Wang, W.; Ji, X.; Li, C. A Composite Coating of GO-Al2O3 for Tritium Permeation Barrier. Fusion Eng. Des. 2020, 156, 111689. [Google Scholar] [CrossRef]
- Kulsartov, T.V.; Hayashi, K.; Nakamichi, M.; Afanasyev, S.E.; Shestakov, V.P.; Chikhray, Y.V.; Kenzhin, E.A.; Kolbaenkov, A.N. Investigation of Hydrogen Isotope Permeation through F82H Steel with and without a Ceramic Coating of Cr2O3-SiO2 Including CrPO4 (out-of-Pile Tests). Fusion Eng. Des. 2006, 81, 701–705. [Google Scholar] [CrossRef]
- Houben, A.; Rasiński, M.; Gao, L.; Linsmeier, C. Tungsten Nitride as Tritium Permeation Barrier. Nucl. Mater. Energy 2020, 24, 100752. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.J.; Feng, Y.J.; Li, F.Z.; Liao, J.L.; Yang, Y.Y.; Feng, K.M.; Liu, N. Preparation and Characterization of Al2O3 Coating by MOD Method on CLF-1 RAFM Steel. J. Nucl. Mater. 2017, 487, 280–287. [Google Scholar] [CrossRef]
- Hu, L.; Wei, G.; Yin, R.; Hong, M.; Cheng, T.; Zhang, D.; Zhao, S.; Yang, B.; Zhang, G.; Cai, G.; et al. Significant Hydrogen Isotopes Permeation Resistance via Nitride Nano-Multilayer Coating. Int. J. Hydrogen Energy 2020, 45, 19583–19589. [Google Scholar] [CrossRef]
- Averback, R.S.; Ehrhart, P.; Popov, A.I.; Sambeek, A.V. Defects in Ion Implanted And Electron Irradiated MgO and Al2O3. Radiat. Eff. Defects Solids 1995, 136, 169–173. [Google Scholar] [CrossRef]
- Popov, A.I.; Lushchik, A.; Shablonin, E.; Vasil’chenko, E.; Kotomin, E.A.; Moskina, A.M.; Kuzovkov, V.N. Comparison of the F-type Center Thermal Annealing in Heavy-Ion and Neutron Irradiated Al2O3 Single Crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 433, 93–97. [Google Scholar] [CrossRef]
- Li, H.; Ke, Z.; Xue, L.; Yan, Y. A Novel Low-Temperature Approach for Fabricating α-Al2O3-Based Ceramic Coating as Tritium Permeation Barrier. Fusion Eng. Des. 2017, 125, 567–572. [Google Scholar] [CrossRef]
- Han, Q.; Geng, Y.; Setchi, R.; Lacan, F.; Gu, D.; Evans, S.L. Macro and Nanoscale Wear Behaviour of Al-Al2O3 Nanocomposites Fabricated by Selective Laser Melting. Compos. Part B Eng. 2017, 127, 26–35. [Google Scholar] [CrossRef]
- Yang, F.; Xiang, X.; Lu, G.; Zhang, G.; Tang, T.; Shi, Y.; Wang, X. Tritium Permeation Characterization of Al2O3/FeAl Coatings as Tritium Permeation Barriers on 321 Type Stainless Steel Containers. J. Nucl. Mater. 2016, 478, 144–148. [Google Scholar] [CrossRef]
- Huang, J.; Xie, H.; Luo, L.-M.; Zan, X.; Liu, D.-G.; Wu, Y.-C. Preparation and Properties of FeAl/Al2O3 Composite Tritium Permeation Barrier Coating on Surface of 316L Stainless Steel. Surf. Coat. Technol. 2020, 383, 125282. [Google Scholar] [CrossRef]
- Liu, S.; Ju, X.; Qiu, J.; Chen, G.; Sun, J.; Xin, Y.; Ma, F. Tritium-Permeation-Barrier Properties of Erbium Oxide (TPB) Coating on CLAM Steel. Fusion Eng. Des. 2019, 138, 347–351. [Google Scholar] [CrossRef]
- Xu, L.; Liu, S.; Wang, M.; Zhou, S. Crack Initiation and Propagation Mechanism of Al2O3-DBC Substrate during Thermal Cycling Test. Eng. Fail. Anal. 2020, 116, 104720. [Google Scholar] [CrossRef]
- Liu, H.; Tao, J.; Gautreau, Y.; Zhang, P.; Xu, J. Simulation of Thermal Stresses in SiC-Al2O3 Composite Tritium Penetration Barrier by Finite-Element Analysis. Mater. Des. 2009, 30, 2785–2790. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, F.; Yi, L.B. Simulation of the Effects of Different Substrates, Temperature, and Substrate Roughness on the Mechanical Properties of Al2O3 Coating as Tritium Penetration Barrier. Nucl. Sci. Tech. 2019, 30, 62. [Google Scholar] [CrossRef]
- Liu, H.; Tao, J.; Zhang, P.; Xu, J. Modeling of Residual Stresses in Functionally Gradient AI2O3 Coating on 316L Substrate. J. Comput. Theor. Nanosci. 2008, 5, 1677–1680. [Google Scholar] [CrossRef]
- Stylianou, R.; Velic, D.; Daves, W.; Ecker, W.; Tkadletz, M.; Schalk, N.; Czettl, C.; Mitterer, C. Thermal Crack Formation in TiCN/α-Al2O3 Bilayer Coatings Grown by Thermal CVD on WC-Co Substrates with Varied Co Content. Surf. Coat. Technol. 2020, 392, 125687. [Google Scholar] [CrossRef]
- de la Roche, J.; Gómez, P.A.; Alvarado-Orozco, J.M.; Toro, A. Hot Corrosion and Thermal Shock Resistance of Dense-CYSZ/YSZ Bilayer Thermal Barrier Coatings Systems Applied onto Ni-Base Superalloy. J. Eur. Ceram. Soc. 2020, 40, 5692–5703. [Google Scholar] [CrossRef]
- Li, B.; Fan, X.; Wang, T.; Zhou, K. Interfacial Fracture Behavior of Double-Ceramic-Layer Thermal Barrier Coating System with Segmented Structure. Eng. Fract. Mech. 2018, 201, 13–28. [Google Scholar] [CrossRef]
- Rezaei, S.; Wulfinghoff, S.; Reese, S. Prediction of Fracture and Damage in Micro/Nano Coating Systems Using Cohesive Zone Elements. Int. J. Solids Struct. 2017, 121, 62–74. [Google Scholar] [CrossRef]
- Li, B.; Fan, X.; Okada, H.; Wang, T. Mechanisms Governing the Failure Modes of Dense Vertically Cracked Thermal Barrier Coatings. Eng. Fract. Mech. 2018, 189, 451–480. [Google Scholar] [CrossRef]
- Seo, S.B.; Bang, I.C. Effects of Al2O3 Nanoparticles Deposition on Critical Heat Flux of R-123 in Flow Boiling Heat Transfer. Nucl. Eng. Technol. 2015, 47, 398–406. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, N.; Xu, H. Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings. Mater. Sci. Eng. A 2007, 452–453, 569–574. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Q.; Liu, X.; Lu, Z. Preparation of Al2O3/Y2O3 Composite Coating for Deuterium Permeation Reduction. J. Rare Earths 2020, 38, 1237–1242. [Google Scholar] [CrossRef]
- Huang, K.; Wang, W.; Yu, Q.; Hao, L.; Mi, J.; Li, S.; Liu, H.; Li, S.; Liu, J.; Wang, J. Simulation of the Residual Stress of the Y2O3/Al2O3 Composite Deuterium Permeation Barrier under Thermal Shock. Int. J. Photoenergy 2021, 2021, 6684802. [Google Scholar] [CrossRef]
- Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A. Engineered Materials Characterization Report for the Yucca Mountain Site Characterization Project Volume 2: Design Data; Lawrence Livermore National Lab: Livermore, CA, USA, 1995.
- Shi, C.; Alderman, O.L.G.; Berman, D.; Du, J.; Neuefeind, J.; Tamalonis, A.; Weber, J.K.R.; You, J.; Benmore, C.J. The Structure of Amorphous and Deeply Supercooled Liquid Alumina. Front. Mater. 2019, 6, 38. [Google Scholar] [CrossRef]
- Rontu, V.; Nolvi, A.; Hokkanen, A.; Haeggström, E.; Kassamakov, I.; Franssila, S. Elastic and Fracture Properties of Free-Standing Amorphous ALD Al2O3 Thin Films Measured with Bulge Test. Mater. Res. Express 2018, 5, 046411. [Google Scholar] [CrossRef] [Green Version]
- Huntz, A.-M.; Andrieux, M.; Vahlas, C.; Sovar, M.-M.; Samelor, D.; Gleizes, A.N. Phase Transformations of Metallorganic Chemical Vapor Deposition Processed Alumina Coatings Investigated by In Situ Deflection. J. Electrochem. Soc. 2007, 154, 63. [Google Scholar] [CrossRef] [Green Version]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gu, B.; Phelan, P.E. Thermal Peeling Stress Analysis of Thin-Film High-Tc Superconductors. Appl. Supercond. 1998, 6, 19–29. [Google Scholar] [CrossRef]
- Nix, W.D. Metallic Thin Films: Stresses and Mechanical Properties. In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties; Woodhead Publishing: Cambridge, UK, 2013; pp. 353–421. [Google Scholar] [CrossRef]
Structure Series | Number | Structure | Total Thickness (nm) | Layer Thickness (nm) |
---|---|---|---|---|
Series 1 (laminated coatings with Y2O3 top coat) | 1 | 316L/Al2O3/Y2O3 | 600 | 300 |
2 | 316L/Y2O3/Al2O3/Y2O3 | 600 | 200 | |
3 | 316L/Al2O3/Y2O3/Al2O3/Y2O3 | 600 | 150 | |
Series 2 (laminated coatings with Al2O3 top coat) | 6 | 316L/Y2O3/Al2O3 | 600 | 300 |
7 | 316L/Al2O3/Y2O3/Al2O3 | 600 | 200 | |
8 | 316L/Y2O3/Al2O3/Y2O3/Al2O3 | 600 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Liu, H.; Wang, W.; Yu, Q.; Jiang, L.; Liu, Y.; Mi, J.; Hao, L.; Yuan, B.; Liu, M.; et al. Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles. Coatings 2022, 12, 1780. https://doi.org/10.3390/coatings12111780
Huang K, Liu H, Wang W, Yu Q, Jiang L, Liu Y, Mi J, Hao L, Yuan B, Liu M, et al. Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles. Coatings. 2022; 12(11):1780. https://doi.org/10.3390/coatings12111780
Chicago/Turabian StyleHuang, Kezhi, Hao Liu, Weijing Wang, Qinghe Yu, Liwu Jiang, Yu Liu, Jing Mi, Lei Hao, Baolong Yuan, Mingkun Liu, and et al. 2022. "Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles" Coatings 12, no. 11: 1780. https://doi.org/10.3390/coatings12111780
APA StyleHuang, K., Liu, H., Wang, W., Yu, Q., Jiang, L., Liu, Y., Mi, J., Hao, L., Yuan, B., Liu, M., Cai, R., & Xiao, W. (2022). Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles. Coatings, 12(11), 1780. https://doi.org/10.3390/coatings12111780