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Abstract: Shot peening technology is used to improve the fatigue strength of materials and parts,
and is one of the most effective surface engineering techniques to prolong fatigue life. In this paper,
according to the finite element simulation analysis of shot peening, a randomly distributed multiple-
shot finite element model was established. The superimposed effects of multiple projectile impact
craters in shot peening are fully considered. The effects of shot velocity, shot peening angle and shot
coverage on the residual stress field and surface roughness were studied. The alloy steel 20MnTiB,
widely used in the automotive industry, was used as the raw material to process the specimens.
The shot peening tests of different process parameters were carried out. The test results verified
the correctness and accuracy of the random distribution model of multiple-shot. The shot-peening
simulation model proposed in this paper allows a more accurate analysis of the effect of shot-peening
parameters on the surface residual stress field and helps to quickly set the correct shot-peening
process parameters. This paper further investigates the effect of shot peening parameters on fatigue
life, providing a basis for the rational development of shot peening solutions.

Keywords: multiple-shot peening; shot-peening coverage; residual stress; roughness; fatigue life

1. Introduction

20MnTiB is an alloy structural steel with good mechanical properties and process
performance, mainly used to manufacture various gears, shafts and other key load-bearing
components, which may suffer from fatigue failure in actual use due to the effect of
alternating loads received. Shot peening is an effective means to improve its fatigue
performance. Shot peening is an important surface treatment process. It uses high-speed
particle flow to continuously impact the surface of the part, causing the surface to undergo
plastic deformation, producing a cyclic hardening layer and residual compressive stress
layer, thereby greatly improving the fatigue life of the part [1]. It is widely used in aerospace,
military, automotive and other fields [2–4].

The process parameters affecting the shot peening effect include various factors such
as projectile diameter, shot peening speed, and projectile coverage. In order to study
the influence of these parameters on the shot-peening effect, scholars have established
a variety of shot-peening models [5–9]. Al-Hassani [10,11] used the analytical method
to study the distribution of compressive stress field and studied the static and dynamic
impact models under the action of a single shot. The plastic deformation layers produced
under static and dynamic loading are consistent. This study did not consider the different
strain rate at the time of impact. Majzoobiet et al. [12] established a model in which a
number of shots hit the workpiece according to a certain array position. The results show
that the shot peening speed is not monotonically increasing for the shot peening effect,
but there is an optimal speed, and this study did not consider the randomness of the
position of the shot. Li et al. [13] applied the python programming language provided
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by ABAQUS to establish a finite element model for the random distribution of the shot’s
spatial position. The experiment proved that this model is superior to the single-shot
model. Gao et al. [14] established a multi-projectile simulation model, and designed a
simulation test program to analyse the effect of each parameter, and fitted the relationship
equation between each parameter and stress, and the results showed that the simulation
model has high accuracy. Luan et al. [15] conducted a review and analysis of the effect
of shot peening on the corrosion resistance of aluminium alloys, and the results showed
that when the inappropriate shot peening parameters are adopted, the shot-peened surface
integrity could be deteriorated, which further weakens the corrosion performance of the
surface. Unal et al. [16] conducted a comparative study of various surface peening methods
for AISI 1050, and the results showed that proper shot peening intensity is important
for fatigue life improvement, and re-blasting can significantly reduce surface roughness,
which is beneficial for improving the fatigue life of the material. Soyama et al. [17] showed
that shot peening can significantly improve the fatigue properties of stainless steel. The
fatigue strength of different shot peening methods is affected by surface roughness and
work hardening. Matuszak et al. [18] compared conventional shot peening (RSP) and
semi-random shot peening (SRSP) based on a finite element simulation approach. An
experimental study was also carried out based on specimens of EN-AW 7075 aluminium
alloy. It was found that conventional shot peening led to a reduction in surface roughness,
while semi-random shot peening led to an increase in the degree of hardening of the surface
layer. Wang et al. [19] used a femtosecond laser with ultra-high pulse density and ultra-low
pulse energy to carry out nondestructive laser shot peening by combining the methods
of experiment, finite element analysis and molecular dynamics simulation. Compared
with traditional nanosecond laser shot peening, the surface roughness remained. The
double temperature finite element analysis showed that no melting occurred during shot
peening. Shen et al. [20] studied high-strength 7075-T651 aluminium alloy shot-peening
using glass shot as the shot material. A random shot FE model was developed and the
effects of shot number and spatial location on the residual stress field (RSF) were discussed.
Hu et al. [21,22] used a modified three-dimensional random representative volume finite
element model to systematically investigate the effects of model dimensions and thermal
softening after shot peening on residual stresses, Almen strength, coverage and arc height.
The necessity to consider thermal effects in the constituent material model of shot peening
is also analysed. They conducted a systematic study combining experiments and multiple-
shot finite element analysis to analyse the microstructural evolution and stress state of shot
peened GH4169 superalloys at various strengths and coverage rates.

At present, the numerical models used in the peening research mainly include the
single-shot peening model and the array-shot model. These models neglect the randomness
of the shot position in the actual shot peening process, and there are not yet many applica-
tions of the stochastic distributed multi-shot model. In this paper, the APDL language is
used to establish a randomly distributed multiple-shot impact model through parametric
programming to more realistically simulate the shot-peening process. Based on the above
model, the influence of shot-peening parameters on shot peening effect is analysed. The
shot peening test was designed and was carried out under different shot peening parame-
ters. The residual stress curves of different shot peening parameters were measured based
on an X-ray residual stress tester. At last, the fatigue test of samples under different shot
peening parameters was carried out, and the influence of shot peening parameters on
fatigue life was analysed.

2. Finite Element Simulation Analysis

Numerical simulation is carried out by using the dynamic analysis and the LS-DYNA
module. The target plate is a 3 × 3 × 1.2 cuboid, and the shots are spheres with a diameter
of 0.6 mm. The penalty factor value is 0.5. In order to improve the contact rigidity, the static
friction coefficient is 0.2 and the friction coefficient is 0.15. Because the model is much less
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than the actual size, it needs to apply vertical surface contact damping in order to avoid the
impact of shock. The contact damping coefficient is:

ξ =
VDCξcrit

100
(1)

The VDC is a viscous damping coefficient, which is defined as 20. ξcrit is the critical
damping coefficient, automatically calculated by the program.

ξcrit = 2mω (2)

where m is the mass of the target plate and ω is the intrinsic frequency of the target plate.
The simulation analysis is based on the explicit dynamic analysis of LS-DYNA. The

size of the target plate is 3 × 3 × 1.2 mm3, the middle 1 × 1 × 1.2 mm3 part meshes with
a hexahedral mesh with 0.0025 mm edge length and the rest of the mesh size is 0.1 mm.
The material is 20MnTiB and the material model is a Cowper-Symonds hybrid reinforced
material model as in Equation (3).

σy =

1 +

( •
ε

C

)1/p
(σ0 + βEpε

e f f
p

)
(3)

where
•
ε is strain rate, C and p are strain rate parameters, β is the follow-up hardening

parameter, Ep is plastic hardening modulus, Etan is the tangential modulus, ε
e f f
p is effective

plastic strain, σ0 is initial yield stress.
The position of shots is generated by random function, and the centre coordinates

of shots are generated in the space of 1 × 1 × 5 mm3. The non-reflecting boundary
conditions are applied to the 4 sides and the bottom surface of the model, which can prevent
the reflection at the boundary [23]. The finite element model with multiple randomly
distributed shots is shown in Figure 1.
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Figure 1. Finite element model with multiple randomly distributed shots.

Coverage was simulated by defining a shot speed of 60 m/s and vertical blasting with
shot numbers of 10, 20, 30, 40 and 80. Residual stress distribution and surface roughness
are simulated with a shot count of 80 and shot speeds of 40 m/s, 60 m/s, 80 m/s, 100 m/s
and 120 m/s.
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3. Experimental Procedure
3.1. Shot-Peening Test

The 20MnTiB is used as the test material, and its mechanical properties are shown in
Table 1. The sample size is shown in Figure 2. The shot peening equipment is a VB100P air
blasting machine, and the shot is made of cutting steel wire organized in spheres with a
diameter of 0.6 mm. The spray distance is 180 mm.

Table 1. Mechanical properties of 20MnTiB.

Yield Strength
σs/MPa

Tensile Strength
σb/MPa Elongation δ/% Section

Shrinkage ψ/%
Impact Absorption

Energy KU2/J Hardness/HRC

1200~1240 1330~1460 13.0~14.0 58.5~59.5 113~121 38~42
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3.2. Residual Stress Test

Using X350A X-ray diffractometer to test surface residual stress [24–27]. Before the
test, we first need to get a relatively flat cross-section by electrical discharge machining
(EDM). In order to eliminate the machining residual stress, electropolishing technology is
carried out for all samples after EDM. The sketch map is shown in Figure 3. The polishing
solution is a mixing solution of 20% HClO4 and 80% alcohol. After electrolytic polishing,
residual stress σx along the depth direction is tested using an X-ray diffractometer, and the
detailed parameters are shown in Table 2.

Coatings 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

3. Experimental Procedure 

3.1. Shot-Peening Test 

The 20MnTiB is used as the test material, and its mechanical properties are shown in 

Table 1. The sample size is shown in Figure 2. The shot peening equipment is a VB100P 

air blasting machine, and the shot is made of cutting steel wire organized in spheres with 

a diameter of 0.6 mm. The spray distance is 180 mm. 

Table 1. Mechanical properties of 20MnTiB. 

Yield 

Strength 

σs/MPa 

Tensile 

Strength 

σb/MPa 

Elongation 

δ/% 

Section 

Shrinkage 

ψ/% 

Impact Ab-

sorption En-

ergy KU2/J 

Hard-

ness/HRC 

1200~1240 1330~1460 13.0~14.0 58.5~59.5 113~121 38~42 

 

Figure 2. Sample size. 

3.2. Residual Stress Test 

Using X350A X-ray diffractometer to test surface residual stress [24–27]. Before the 

test, we first need to get a relatively flat cross-section by electrical discharge machining 

(EDM). In order to eliminate the machining residual stress, electropolishing technology is 

carried out for all samples after EDM. The sketch map is shown in Figure 3. The polishing 

solution is a mixing solution of 20% HClO4 and 80% alcohol. After electrolytic polishing, 

residual stress 𝜎𝑥 along the depth direction is tested using an X-ray diffractometer, and 

the detailed parameters are shown in Table 2. 

 

Figure 3. Sketch map of electrolytic polishing and measuring position. 

  

Figure 3. Sketch map of electrolytic polishing and measuring position.

Table 2. Parameters of the X-ray diffractometer.

Measuring method: roll fixing method Ψ Ψ angle: 0.0◦, 24.2◦, 35.3◦, 45.0◦ 2θ scan end angle: 146◦

Diameter collimator: Φ3 mm Stress constant: −318 MPa/angle 2θ scan step: 0.10◦

The method for determining peak
positions: cross correlation method Diffraction plane: (211) X-ray tube voltage: 30 KV

Target shooting: Cr Kα 2θ scan start angle: 166◦ X-ray tube current:6.7 mA
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4. Results and Discussion
4.1. Simulation Results and Discussion
4.1.1. Influence of Shot-Peening Coverage on Residual Stress and Surface Roughness

The coverage is simulated by defining the number of randomly distributed shots.
The greater the number, the greater the shot coverage. Define the shot peening speed
as 60 m/s, vertical injection, the number of shots is 10, 20, 30, 40, 80, respectively, and
41 × 41 = 1681 paths are defined along the depth in the collision area. The node stress at
each layer is averaged to obtain the residual stress σx along the depth direction.

Figure 4 shows with the increase of coverage, the residual compressive stress of the
surface increases gradually, and the residual compressive stress layer depth increases
correspondingly, which is eventually stabilized at around 0.56 mm. The maximum residual
compressive stress increases with the increase of the number of shots, and the value is no
longer increased at a number of 40, eventually stabilizing at about 730 MPa. Therefore,
when the number of shots reaches a certain value, that is, the peening coverage reaches
a certain value, the residual stress distribution is close to saturation. The effect of shot
peening will not be enhanced even if shot peening is continued.
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Figure 4. Residual stress distribution along depth.

Figures 5 and 6 show the surface morphology and surface displacement after shot
peening when the number of shots is 80. These results are the same as [28]. According to
the shot peening standard, the surface roughness of shot peening is evaluated by Ra [29].
By calculating the node displacement of the target plate surface along the Z direction, the
value of the roughness is obtained by using the least square line as the datum line. Figure 5
respectively shows the change of the surface roughness when the number of shots is 10, 20,
30, 40, 60, 80, 100, and 120.

Figure 7 shows with the increase in the number of shots, surface roughness gradually
increases. When the number of shots is 80, roughness decreases slightly. This is because
shot peening has a levelling effect on the crater formed early when the coverage rate
reached 100% [30]. With continued shot peening, the value of the roughness increases
slightly and tends to saturation. It can be seen that there is an optimal value of the shot
coverage rate. After reaching a certain value, the roughness value remains basically the
same, and the shot peening for a long time has no significant influence on the surface
roughness of the test piece.

4.1.2. Influence of Different Shot Speeds on Residual Stress and Surface Roughness

Figures 8 and 9 show the residual stress distribution and the value of roughness when the
number of shots is 80, the shot speed is 40 m/s, 60 m/s, 80 m/s, 100 m/s and 120 m/s, respectively.
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As can be seen from Figure 8, as the velocity of the shot increases, the surface residual
compressive stress value gradually decreases, the depth of the pressure layer gradually
increases, the peak value of the compressive stress increases first and then decreases, and the
surface roughness also increases. Therefore, it is not that the higher the shot speed (pressure),
the better the shot peening effect; rather, there is an optimum speed (pressure) value.
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4.2. Test Results and Discussion
4.2.1. Effect of Shot-Peening on Residual Stress Distribution

The measured residual stress distribution under different shot peening pressure is shown
in Figure 10. As shown in the picture, with the increase of peening pressure, surface residual
compressive stress is gradually reduced, and the depth of the residual compressive stress
layer gradually increases. The maximum compressive residual stress is −718 MPa, −747 MPa,
−728 MPa, separately. The value first increases and then decreases and these are consistent
with the simulation results in Figure 6. This result is similar to that of the literature [31].
Figure 11 shows a comparison of the test shot peening residual stresses with the simulated
shot peening residual stresses. Under these blasting parameters, there is a blast coverage
of 200%, a blast angle of 90◦, a test shot pressure of 0.2 MPa and a simulated shot speed of
60 m/s. The surface residual compressive stress values of the simulation results are 2.7% less
than the test results. The peak value of residual compressive stress is only 1.7% less than the
test result, so this model can better simulate the actual shot-peening process.

4.2.2. Effect of Shot-Peening on Roughness

Use a JXD-B reading microscope to observe the surface morphology of shot peening
samples. The surface roughness measurement is carried out by using the MiCROMEASUR2
3D profile of the French STIL company.

(1) The effect of different shot peening pressure on the roughness

Figures 12 and 13 separately show the surface morphology and roughness after shot
peening when the pressures are 0.1 MPa, 0.2 MPa and 0.3 MPa respectively, and the
magnification of the image is 25×.
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Figure 12. Surface morphology of the shot peening under different pressures.

As shown in Figure 12, with the increase of shot peening pressure, the surface mor-
phology of the sample is rougher, and surface roughness also increases. The experimental
results are consistent with Figure 9.

(2) The effect of different injection angles on the roughness

Figures 14 and 15 separately show the surface morphology and roughness after
shot peening when the pressure is 0.1 MPa and the spray angles are 90◦ and 60◦; the
magnification of Figure 14 is 25×.
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Figure 15. Surface roughness under different spray angles.

Figure 15 shows that the surface roughness at 60◦ is slightly less than the surface
roughness at 90◦, mainly because the smaller the spray angle, the corresponding normal
velocity component will be reduced, and the depth of the crater will be reduced. Moreover,
due to the tangential velocity component, subsequent shots will have a levelling effect
on the previous craters, and the roughness will be reduced further. However, due to the
smaller normal speed, the maximum residual compressive stress and the compressive
stress layer are smaller; thus, the strengthening effect is reduced.
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4.2.3. Effect of Shot-Peening on Fatigue Life

A fatigue test is carried out by using the SHIMADZU EHF-EM/EV series electro-
hydraulic servo fatigue testing machine. The fatigue lives under different stress levels are
measured when the stress ratio is −1.

(1) Fatigue lives under different shot-peening pressures

Figure 16 shows respectively the fatigue lives of unpeened specimens and peened
specimens under 0.1 MPa, 0.2 MPa, and 0.3 MPa shot peening pressure separately, and the
stress level is 600 MPa.
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As shown in the picture, when the stress level is 600 MPa, the fatigue life of an unpeened
specimen is 1 × 106. When shot peening pressure is 0.1 MPa, the fatigue life is greatly
improved to 3 × 106, which is improved by 200%. However, when the pressures are 0.2 MPa
and 0.3 MPa, the fatigue lives are decreased. This is because excessive shot peening pressure
results in large roughness, and even the specimen surface produces a micro-crack, which
reduces the fatigue life. So, the shot peening process must select a suitable peening pressure.

(2) Fatigue lives under different shot peening coverage rate

Figure 17 shows respectively the fatigue lives of unpeened specimens and peened
specimens when the coverage rates are 80% and 200%, separately, in the case of shot
peening pressure is 0.1 MPa.

As shown in Figure 17, when the peening coverage is 80%, the fatigue life is reduced
by 50% compared to unpeened specimens under 600 MPa stress level, and the fatigue life is
reduced by 67% compared to unpeened specimens under 700 MPa stress level. When shot
peening coverage is 200%, the fatigue lives under 600 MPa and 700 MPa stress levels are
increased by 200% and 33%, separately. Therefore, it is concluded that when the peening
coverage is less than 100%, the fatigue life is decreased. The main reason is that the residual
tensile stress is generated on the surface, and the residual stress distribution along the
depth direction is not uniform, which reduces the fatigue life.

(3) Effect of different spray angles on fatigue lives

Figure 18 shows respectively the fatigue lives of unpeened specimens and peened
specimens when the spray angles are 60◦ and 90◦, separately, when shot peening pressure
is 0.1 MPa.
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Figure 18. Effect of different spray angles on fatigue lives.

From Figure 18, it can be seen that the fatigue life of the peened specimens at 60◦ and 90◦

has a certain increase compared to that without shot peening. However, the fatigue life under
90◦ spray angle is improved significantly. Although the roughness at the 60◦ spray angle is
smaller than that at the 90◦ spray angle, the fatigue life is greatly improved under the 90◦ spray
angle. That is because the spray angle is vertical so that greater residual compressive stress is
produced on the surface of the sample, and the surface is strengthened.

5. Conclusions

In this paper, a multiple-shot random distribution model is established to simulate the shot
peening process, and the following conclusions are drawn combined with experimental study:

(1) The simulation results of the multiple-shot random distribution model are basically consis-
tent with the experimental results, which can better simulate the process of shot peening.

(2) With the increase of peening coverage, the depth of the compressive residual stress
layer increases and surface roughness becomes larger. However, the residual stress
field distribution and surface roughness value become stable when the coverage rate
reaches a certain value. The following shot peening will not make it more useful.
However, the fatigue life will be reduced when the coverage rate is less than 100%, so
the coverage rate must be at least 100%.

(3) With the increase of peening pressure, surface residual compressive stress decreases
gradually, and the depth of the residual compressive stress layer increases. Surface
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roughness becomes larger, correspondingly, and the peak pressure force first increases
and then decreases. Nevertheless, the surface of parts will generate micro-cracks due
to excessive pressure, which reduces the fatigue life.

For residual stress testing, different stripping methods may have an effect on the
residual stress test results and need to be further investigated in subsequent work.
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