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Abstract: In this work, Polyethylene terephthalate (PET), one of the most widely consumed polymers,
has been used as starting material for the development of non-stick surfaces through a fast, simple
and scalable method based on solvent-induced crystallization to generate roughness, followed by a
fluorination step. Several solvents were tested, among which dichloromethane was chosen because it
gives rise to the formation of a particulate layer with rough topography. This particulate layer was
covered by a polymer thin and smooth skin that must be removed to leave the rough layer as surface.
The skin has been successfully removed by two strategies based on mechanical and chemical removal,
each strategy producing different surface properties. A final treatment with a diluted solution of
a fluorinated silane showed that it is possible to obtain PET surfaces with a water contact angle
higher than 150◦ and low water adhesion. The reason behind this behavior is the development of a
hierarchical rough profile during the induced polymer crystallization process. These surfaces were
characterized by XRD, FTIR and DSC to monitor solvent induced crystallization. Topography was
studied by SEM and optical profilometry. Wetting behavior was studied by measuring the contact
angles and hysteresis.

Keywords: polymer; monomaterial; Polyethylene terephthalate (PET); hydrophobicity; solvent
induced crystallization; roughness; optical profilometry

1. Introduction

Surface modification of polymer materials is an appealing strategy to manage desirable
functionalities, such as water repellency, antiicing, antifogging, antifouling, anticorrosion,
and friction reduction, among others [1–6]. Surface treatments usually imply either to-
pography or chemical alteration or a combination of both. Several approaches based on
bottom-up and top-down methods have been used to develop rough surfaces, whereas
chemical modification is commonly done by fluorination and plasma treatments. The most
widely known lotus leaf profile to achieve hydrophobicity is based on hierarchical rough
structures on the micrometric and nanometric scales. In this sense, one of the most popular
strategies is the application of particle coatings, specifically modified silica nanoparticles or
all-organic particles [7]. However, in the search of sustainability and scalability, efforts must
focus on fabricating mono-materials with inherent non-stick properties as a replacement of
added top-layer coatings. In addition, choosing starting materials highly available such
as polymers makes sense not only because of the versatility of these materials in terms of
properties, but also because the development of non-stick properties in polymeric surfaces
fosters the adaptation of these materials to the circular economy objectives. In fact, con-
trolling wetting properties helps optimizing the use of resources and simplifies the rinsing
stage previous to recycling by making surfaces self-cleaning.

In this work, Polyethylene terephthalate (PET) films were used as starting material.
PET is an extensively used polymer, particularly in packaging and textiles, involving 63%
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of the plastic used in the European Union [8]. Whereas a wide variety of polymer materials
either as particles or films have been used to prepare hydrophobic surfaces [9], PET has
rarely been considered probably because of its rather hydrophilic chemical nature. The
oldest works found in the literature used PET as a mere substrate for testing technologies
to modify the surface of materials. For example, Kim et al. [10] used plasma source ion
implantation technique with CF4 gas on PET films reaching a water contact angle, θw, of
118◦ at most. More recently, Gotoh et al. [11] also used plasma to modify the chemical
nature and topography of PET films and, with a sequence of combined treatments, they
achieved superhydrophobic surfaces, i.e., θw higher than 150◦ and hysteresis lower than
10◦. Although effective, these treatments are usually limited to small surface areas and diffi-
cult to apply to mass-produced items. Moreover, a sequence of etching methods combining
ion irradiation and chemical attack has been used by Korolkov et al. [12] to obtain PET
membranes that exhibit a certain level of hydrophobicity, enough to produce good results
in oil-water emulsion separation. Hot embossing is proposed as an alternative technique
that is claimed to be adaptable to large-scale production but also at the microfabrication
level [13]. This technique has been applied to PET films to build periodic microstructures
that give rise to a significant augmentation of θw without modifying the surface chem-
istry [14]. Fu et al. [15] achieved PET surfaces showing θw up to 140◦ and a rose petal-like
behavior, which means that these so-treated surfaces show high water adhesion and the
water droplets do not roll down even turning the substrate upside down. This water
behavior is known as parahydrophobicity and is also interesting for an ample number of
applications, including membrane technologies and water harvest and conduction [16].
Another approach that does not rely on external coating and likely overcomes the short-
comings related to the application to large surfaces is the one proposed by Oh et al. [17,18].
These authors prepared superhydrophobic PET surfaces either on dense films or fabrics
following a method that includes a first step of a chemical etching by oxygen plasma
or NaOH hydrolysis followed by thermal aging. Superhydrophobicity is consequently
achieved without any further hydrophobization step. This can be extremely useful with
the only limitation of the long aging times (24 h in some cases) and the high dependency
that has the crystallinity and, thus, molecular weight and dynamics, on the success of
the process.

Recently, we proposed a methodology to prepare hydrophobic surfaces without any
external coating and without fluorination or hydrophobization final step [19]. Our method
consists of a two-step solvent treatment: swelling and coagulation. Firstly, the sample is
immersed for a few seconds in a good solvent of the polymer that causes the swelling of
the surface; immediately after, it is immersed into a non-solvent that quenches the swelled
polymer morphology giving rise to porous surfaces. The topography can be tuned by
varying the immersion times in each solvent. Based on this previous work, we adapted
this method to PET surfaces to develop hydrophobic properties on a mono-material using
our simple and scalable process. In this case, the crystalline behavior of PET is exploited
and crystallization is induced by immersion in a solvent [20]. The aim of the immersion is
to allow mobility on the polymer chains by decreasing the glass transition temperature,
favoring crystallization while forming a structured morphology at a micrometric scale [21].
These solvent-induced methods have already been employed with other polymers [22,23]
but as far as we know, they have not been applied to PET polymer to generate roughness.
Finally, a fluorinated silane is used to enhance the hydrophobicity of the surface [24].

2. Materials and Methods
2.1. Materials

Polyethylene terephthalate (PET) bottle grade (intrinsic viscosity (IV) = 0.80 ± 0.02 dL g−1)
in pellet form was provided by Caiba (Valencia, Spain). Solvents as dichloromethane (DCM),
dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dioxane, acetone and hexane from
Sigma-Aldrich (Darmstadt, Germany) have been used without prior purification. An aque-
ous solution of 20 wt.% NaOH has also been used. For surface modification, a trichloro (1H,
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1H, 2H, 2H-perfluorooctyl) silane (PFOTCS), 97% purity, Mw = 481.54 g·mol−1 provided
by Sigma-Aldrich has been used.

2.2. Methods

PET films were prepared from pellets by hot compression using a Specac press and
Upilex foils as separators at both sides. The material was first melted at 260 ◦C for 1 min and
after that, 150 bar pressure was applied for 3 min. Circular films were obtained with 4 cm of
diameter and 120–130 µm of thickness. Two different cooling programs were applied: a fast
cooling process (Q-samples) and a controlled temperature process at a cooling rate of about
7/8 ◦C·min−1 (T-samples). Solvent treatments were performed to generate roughness by
induced crystallization. Several solvents were tested to induce PET crystallization; the most
suitable results were obtained by immersion in DCM for 1 h and room temperature drying.
This treatment gives rise to a particulate topography that is covered by a thin polymer
layer or skin, which must be removed to uncover the desirable rough surface. With this
aim, a surface washing process was performed following two different protocols: (i) by
spraying acetone under pressure or (ii) by immersion in a 20% NaOH solution for 15 min at
80 ◦C. Finally, the last step of surface fluorination by immersion in PFOTCS hexane solution
for 20 min at room temperature was carried out. The concentration of the solution was
10 µL mL−1. Figure 1 summarizes the methodology followed in this work.
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Figure 1. Methodologic scheme followed in this work to prepare the hydrophobic PET surfaces.

2.3. Characterization

Differential scanning calorimetric (DSC) measurements were carried out under dry
nitrogen purge with a TA Instruments Q100 calorimeter (TA Instruments, New Castle, DE,
USA). About 8 mg of sample were encapsulated in an aluminum pan. The DSC is recorded
from room temperature to 280 ◦C at a rate of 10 ◦C·min−1.

ATR-FTIR spectra of the PET surfaces were obtained using an FTIR Perkin-Elmer
Spectrum-One (PerkinElmer, Waltham, MA, USA), with 4 scans and 4 cm−1 resolution.

Wide-angle X-ray Diffraction (WAXD) patterns were registered in the reflection mode
by using a Bruker D8 Advance diffractometer (Bruker Coorporation, Billerica, MA, USA)
provided with a PSD Vantec detector. CuKα radiation (λ = 0.154 nm) was used, operating
at 40 kV and 40 mA. A step-scanning mode was employed for the detector. The diffraction
scans were collected with a 2θ step of 0.024◦ and 0.5 s per step.

The surface morphology and section of the films were visualized by scanning electron
microscopy (SEM) using a Philips XL30 microscope (Philips, Amsterdam, The Netherlands)
and a HITACHI S-8000 (Hitachi High-Tech Group, Tokyo, Japan). The samples were coated
with a layer of gold-palladium alloy before imaging.

Apparent water contact angles (θw) were measured with Milli-Q grade water by the
sessile drop method using a conventional drop shape analysis technique and using a Atten-
sion Theta optical tensiometer, (Biolin Scientific, Gothenburg, Sweden). The determination
of the contact angle from the captured images is carried out by the Young—Laplace method.
The initial water contact angle in static conditions with a 5 µL volume drop is considered
to be θw. Reported θw values were the average of at least five measurements in different
regions. Standard deviations are included. Water contact hysteresis (∆θw) was estimated
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by the difference between advancing and receding contact angles measured by dragging a
5-µL water droplet on the surface.

Optical profilometry was used to study the surface topography and to determine the
surface roughness parameters by using a Zeta Instrument profilometer model Z-20 (KLA
Company, Milpitas, CA, USA). The roughness parameters given in this work are mean
values determined from at least 10 images at 50× (265 µm × 199 µm) recorded in each
sample. Standard deviations are included. The parameter Sa is the arithmetic average
height parameter and it is the most used for general characterization of the surface. Sq
represents the standard deviation of the distribution of the surface heights. The parameters
Spv corresponds to the maximum peak to valley difference. The average height of the
5 highest peaks and the 5 deepest peaks is taken with the Sz parameter. The kurtosis data,
Sku, which gives an idea of the surface homogeneity is also included. This parameter
measures the shape of distribution peaks, the value 3 being the one corresponding to a
Gaussian distribution. The value of Ssk accounts for the symmetry of the profile on the
midline; if the value is negative the roughness has an incoming character, while if it is
positive the roughness is outgoing [25].

3. Results and Discussion

Solvent-induced crystallization is highly dependent on the morphology and the molec-
ular weight of the polymer chains and the actual semicrystalline morphology of the surface.
Solvent-induced crystallization requires starting samples that are not highly crystalline, for,
in that case, there is little space for the tuning of the final crystallization. A survey with
different solvents used in the literature to induce crystallization [21,26,27] was done to find
the conditions under which topography is generated. In this work, we tested: DCM, DMF,
DMSO, dioxane and acetone. With T-samples (slowly cooled from the melt and, thereby,
more crystalline than those quenched Q-samples) no solvent was able to generate a rough
structure on the surface. The same happened when recycled PET polymers were used
instead of virgin PET. This issue can be explained in terms of polymer molecular weight,
which is considerably lower for recycled PET [28], which makes the surface crystallinity
well developed and higher in this PET grade. Attending to the SEM images shown in
Figure S1 of the surfaces after 1 h of immersion of the PET Q-samples in the above-listed
solvents, a rough surface is only achieved with DCM. Immersion in the rest of the solvents
did not apparently modify the surface of the film or, at least, did not generate a rough
profile suitable to give rise to a hydrophobic behavior. Therefore, the following experiments
and measurements were done only on DCM treated surfaces.

3.1. Roughness Generation by Solvent-Induced PET Crystallization

Figure 2 shows DSC heating curves of PET films before and after immersion in
DCM, namely Q-PET and Q-PET-D, respectively. In addition, the sample prepared under
slow cooling conditions to boost its crystallization, T-PET, was included to compare the
thermal histories.

It is observed that fast cooled sample, Q-PET, displays a cold crystallization peak
indicating that the sample crystallizes from the glass upon heating, as usually occurs
when the polymer is quenched to an amorphous state [29]. In the T-PET, there was
no cold crystallization peak because the film had already crystallized during the slow
cooling processing. The cold crystallization is a known phenomenon in semicrystalline
polymers that crystallize upon heating if they come from a quenched amorphous state. The
quenched amorphous structure from fast-cooled films becomes sufficiently mobile above
the glass transition and crystallization occurs. This process occurs because the polymer has
been quenched. If the polymer has been left to crystallize, this cold crystallization is not
seen, since the polymer is already crystalline. Attending to the DSC trace of the treated
sample Q-PET-D, there was no cold crystallization peak, which means that the sample
crystallizes during the dichloromethane immersion treatment. In addition, a significant
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opacification of the film is observed as shown in Figure S2 which also indicates that the
sample has crystallized.
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Figure 2. DSC traces corresponding to a heating cycle of the samples with different thermal treatments:
T and Q processing conditions and Q-sample after the solvent immersion treatment (Q-PET-D).

Thermal transition enthalpies, cold crystallization (∆Hcc) and melting (∆Hm), calcu-
lated by the area above the peaks are listed in Table 1. Crystallinity, Xc, i.e., the crystallinity
of the films after the processing and the solvent treatment, was calculated by Equation (1)
taking into account the area of the melting endotherms and considering ∆H100 the melting
enthalpy of a fully crystalline PET (140 J·g−1) [28].

Xc = 100 × (∆Hm − ∆Hcc)/∆H100 (1)

Table 1. DSC enthalpies and crystallization data for Q-PET before and after the treatment (Q-PET-D)
and T-PET.

Sample Name ∆Hcc/J·g−1 ∆Hm/J·g−1 Xc/%

Q-PET 33.7 34.8 0.8
Q-PET-D 0 42.3 30.2

T-PET 0 38.3 27.3

Data in the table indicate that, under Q-processing conditions, the PET film was almost
amorphous, whereas, after the solvent treatment, it showed an X cover of a film processed
under T-conditions, which is significantly crystalline.

The solvent-induced crystallization is also confirmed by X-ray diffraction and infrared
spectroscopy as is shown in Figure 3.

X-ray diffractions display in Figure 3a shows that, as expected, Q-PET does not
exhibit diffraction peaks corresponding to crystalline entities, but only the amorphous
halo, whereas T-PET shows the characteristic diffractions of crystalline PET [30] located at
16.4◦, 17.1◦; 23.2◦ and 25.5◦. After the solvent treatment with DCM, Q-PET-D also showed
these diffractions, although less defined, probably due to the scattering produced by the
rough surface.

Furthermore, the ATR-FTIR spectra of the samples appear in Figure 3b. The T-PET has
the characteristic bands of crystallized PET associated with the trans conformation at 1473,
1343, 973 and 846 cm−1 (marked with arrows in the graph). Accordingly, Q-PET-D also
displayed these bands, which are missing or less intense in amorphous Q-PET, confirming
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again the crystallization of PET induced by the immersion in DCM [31,32]. The lower
quality of the Q-PET-D spectrum compared to the other two samples also suggests the
roughness of the surface.
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Figure 3. X-ray Diffraction data (a) and FTIR spectra (b) of T-PET and Q-PET samples before and
after (D) the solvent treatment.

SEM micrographs of the Q-PET-D surface after immersion in DCM are included in
Figure 4.
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SEM images of the sample after 1-h immersion in DCM show the occurrence of a
particulate structure on the surface. Particles have a homogeneous size of 5–10 µm and
are distributed all along the film surface. These particles do not have a smooth surface;
instead, a submicrometer roughness is suspected at the highest magnifications. Attending
to the section images, it can be concluded that such particle layer has a thickness of about
8–12 µm, whereas the rest of the film remains dense. Interestingly, this particle layer is
covered by a thin and continuous layer that is cracked at some points, showing the particles
below. The origin of this layer has not been explained yet. A hypothesis is that short and
mobile chains diffuse out of the particulate structure and form this skin. In any case, the
efforts at this point focused on removing that skin layer in order to leave the particle layer
fully exposed.

For the removal of this continuous skin, two procedures were tried. On the one
hand, the skin was mechanically removed by pushing it away with acetone spraying
at room temperature. This procedure will be named as A in what follows. It is worth
mentioning that air spraying was unsuccessfully attempted. On the other hand, the PET
skin was dissolved by immersion in a 20% NaOH solution (procedure N). This last treatment
might produce a hydrolytic degradation of the polymer leaving OH residual groups at the
surface [33]. Both treatments led to the successful removal of the skin, leaving the particle-
shaped layer exposed as shown below in the micrographs (both surfaces and sections)
of the upper part of Figure 5. However, the chemical treatment with NaOH apparently
modifies the morphology of the particles, since they seem smaller and, consequently, more
dispersed than before the treatment.
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The θw of the surfaces was measured; the results are listed in Table 2. In addition,
water droplet pictures are also included in the figure. Note that there are no data for sample
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Q-PET-D since the fact that the skin layer was cracked at some points made the values vary
along the surface. In its turn, flat film Q-PET results are included for the sake of comparison.
Interestingly, after the skin removal treatment, the values were very different depending
on the removal strategy of the PET skin employed. Apparently, spraying with acetone
physically removes the skin with no chemical modification of the surface and θw increases
from 72◦ ± 2◦ for the Q-PET flat film to 125◦ ± 3◦ for Q-PET-DA. This increase is in the
same order of magnitude as observed by other authors that generate rough PET surfaces
by different methods [13,14].

Table 2. Water contact angles, θw, and roughness parameters determined by optical profilometry.

Sample Name θw/◦ Sa Sq Spv Sz Ssk Sku

Q-PET 72 ± 2 0.08 ± 0.02 0.11± 0.02 2.2 ± 0.5 1.2 ± 0.3 0.4 ± 0.2 5.2 ± 0.9
Q-PET-DA 125 ± 3 2.00 ± 0.02 2.52 ± 0.03 20.0 ± 0.4 16.7 ± 0.2 0.49 ± 0.04 3.3 ± 0.1

Q-PET-DA-FS 156 ± 2 2.2 ± 0.2 2.8 ± 0.2 23 ± 2 16 ± 1 0.10 ± 0.05 3.0 ± 0.2
Q-PET-DN 66 ± 2 3.3 ± 0.7 4.1 ± 0.8 28 ± 3 24 ± 3 0.2 ± 0.1 2.9 ± 0.3

Q-PET-DN-FS 154 ± 2 4.2 ± 0.4 5.2 ± 0.5 32 ± 3 27 ± 2 0.3 ± 0.2 2.6 ± 0.3

On the contrary, the immersion in NaOH solution not only dissolved the PET skin
but also altered the chemical nature, as expected [33]. Despite the successful removal of
the skin and uncovering of the underlying topography, a hydrophilic behavior was found
featured by a contact angle of 66 ± 2◦ or even a total spread of the water droplets on the
surface in some areas. This could be explained by the hydrolisis of PET during the NaOH
immersion treatment that gives rise to a hydrophilic surface due to the presence of -OH
residual groups [34].

Regarding the topography, Table 2 contains the main roughness parameters deter-
mined after analyzing the treated PET surfaces by optical profilometry, as explained in the
experimental part. The values reported in Table 2 indicate that the skin removal by means of
the NaOH protocol, Q-PET-DN, leads to a greater roughness compared to Q-PET-DA. This
suggests, as it could also be intuited in the SEM micrographs, that, during the treatment,
NaOH not only removes the skin by dissolution but also affects the underlying particulate
substrate. Hydrolytic degradation by the effect of NaOH on PET flat foils has been seen
to induce a slight increase in surface roughness parameters, which has been explained by
the dissolution of hydrolysis reaction products [35]. This sample also is more scattered
in all the roughness parameters compared to the sample in which the skin was removed
by acetone spraying, Q-PET-DA. In fact, the Q-PET-DA sample showed an outstanding
reproducibility of the roughness parameters all along the surface, which is an indicator of
homogeneity. On the contrary, all the above-mentioned facts correspond to relative lack of
homogeneity of the surfaces after the treatment with NaOH. Moreover, both samples hold
low but positive Ssk values, so the surfaces can be defined as protruded, although at a very
low extent.

Figure 6 shows an example of three-dimensional images of both surfaces where the
more heterogeneous character of Q-PET-DN is suspected.

Importantly, both skin removal treatments produce surfaces with high adhesion to
water on which hysteresis values cannot be measured since the droplets remain pinned to
the surface, even when turning the samples upside down.
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3.2. Chemical Modification by PFOTCS

As described above, the generation of roughness on PET films, without chemical
alteration, does not push the hydrophobicity further than a θw value of 125◦, in agreement
with the literature. Nevertheless, bearing in mind the thermal annealing strategy by
Oh et al. [17,18], which produced θw values beyond 125◦, thermal annealing of varying
duration and temperature were tried on Q-PET-DA and Q-PET-DN. However, in our case,
no increase in the θw was observed after these treatments. It goes without saying that the
success of the annealing is strongly dependent on the chain molecular dynamics, governed
by the molecular weight of the polymer and its semicrystalline morphology, among other
factors. This means that every PET polymer used needs different annealing conditions to
develop hydrophobic surfaces. In this work, with the raw material employed, we did not
find the right conditions for the annealing in order to increase the θw of the surfaces.

Therefore, to improve hydrophobicity, a mild chemical modification was tested using
PFOTCS as a fluorinated agent. The samples were immersed for 20 min in a dilute solution
of PFOTCS in hexane and dried at ambient temperature afterwards.

The lower part of Figure 5 contains SEM images of the fluorinated surfaces: Q-PET-
DA-FS and Q-PET-DN-FS. No remarkable difference in the morphology of the surfaces
after the immersion in the PFOTCS solution is seen. In their turn, the mean roughness
values in Table 2 suffer only a slight increase in both samples, higher in the case of the
surface that came from the NaOH immersion, Q-PET-DN-FS. However, the water behavior
is dramatically affected, as can be seen in the water droplet pictures and also in the data in
Table 2. Both surfaces showed θw higher than 150◦. This demonstrates that the fluorination
step has been successful.

Nevertheless, although the incorporation of silane moieties has been indirectly proven
by the θw, an FTIR study on the surfaces after fluorination was carried out, which appears
in Figure 7. The spectrum of Q-PET-DA is included as a nonfluorinated reference.

Attending to the spectra shown in Figure 7, the bands attributed to the silane moieties,
absent in Q-PET-DA, were more intense in the sample, which came from NaOH immersion,
namely Q-PET-DN-FS. These bands are marked as arrows in the Figure and correspond
to the symmetric stretching of C-F2 at 1188 and 1143 cm−1, the Si-O-Si asymmetric and
symmetric stretching at 1074 cm−1 and 809 cm−1, respectively. The 897 cm−1 band is
attributed to the Si-OH bond, so it is considered that in both cases there is hydrolyzed
and uncondensed silane on the surface. The infrared region between 620 and 540 cm−1

corresponding to modes of vibration of the C-F groups of fluorinated silane was analyzed.
In the case of Q-PET-DN-FS (washed with NaOH), the intensity of this band is slightly
higher. These facts could indicate higher adsorption of the silane on the surface of this
sample, once more reinforcing the hypothesis of the presence of -OH groups on the surface
that may favor the adsorption and condensation of the silane.
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Figure 7. ATR-FTIR spectra of the surfaces after the fluorination step with PFOTCS. The ATR-FTIR
spectrum of Q-PET-DA is included for comparison.

Therefore, the fluorination step has worked properly on both surfaces, more efficiently
on those treated with NaOH, resulting in θw higher than 150◦; however, at this point
it is important to check if the hysteresis has changed. This would mean that it is also
possible to diminish the water adhesion by fluorinating these surfaces. The ∆θw values
were measured by dragging a 5-µL water droplet on the surface of Q-PET-DA-FS and
Q-PET-DN-FS; some pictures are included in Figure 8, together with high-resolution SEM
micrographs. The pictures show the moment just before the droplet is detached from
the surface, and the difference between the contact angle at the right side (advancing)
and that at the left side (receding) is the hysteresis. This is an excellent way to visualize
the significance of the hysteresis values in the wetting behavior. The results show that
the sample Q-PET-DA-FS exhibits ∆θw values varying from 15◦ to 20◦. These values are
highly reproducible throughout the surfaces tested. On the contrary, the ∆θw values of
Q-PET-DN-FS are strongly dependent on the area analyzed. Two different areas and ∆ θw
measured on them are shown in the right hand of Figure 8. In some regions, ∆θw values
lower than 20◦ were obtained, whereas, in other regions, ∆θw higher than 70◦ were found,
as shown in the images in Figure 8. This behavior agrees well with the previously reported
lack of homogeneity in the roughness parameters of the Q-PET-DN-FS surface.

Trying to gain deeper insight into the different homogeneity of the Q-PET-DA-FS and
Q-PET-DN-FS surfaces, high-resolution SEM images were taken in different regions of both.
Figure 8 shows some of these images and more of them are included in Figure S3. The
SEM images show that the sample Q-PET-DA-FS presents a submicrometer roughness (not
evaluable by optical profilometry), which comes from the solvent-induced crystallization
and which has remained after the skin removal and fluorination steps. Taking into account
that the fluorination step has been successful on both surfaces (even more efficient on Q-
PET-DN-FS) and, therefore, the surface chemistry is similar for both; this specific roughness
pattern, which characterizes Q-PET-DA-FS in an outstanding homogeneous way, makes
this sample highly hydrophobic with low hysteresis. On the contrary, Q-PET-DN-FS
exhibits some SEM regions without this submicrometer roughness; it also showed high
heterogeneity in the profilometric surface characterization. This is most probably due to
the immersion in NaOH, which attacks the topography generated by the solvent-induced



Coatings 2022, 12, 137 11 of 13

crystallization. These smooth areas are likely responsible for the water adhesion and,
therefore, the low ∆θw values.
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4. Conclusions

Summarizing, in this work a first approach has been made to the use of a polymer of
high consumption such as PET as a substrate for the preparation of surfaces with repellent
properties. The roughness necessary for the appearance of the hydrophobic properties has
been generated by means of a simple, fast, and cheap method that involves immersion in a
common solvent, and that can be applied independently of the shape and dimensions of
the parts. As its only drawback, this method gives rise to the appearance of smooth and
thin skin on top of the generated particulate layer, which has not been explained yet. Two
different approaches have been tested to successfully remove this skin. One of them, the
immersion into NaOH solution dramatically altered not only the chemical nature but also
the topography of the surfaces, making them more heterogeneous at both micrometer and
submicrometer scales. However, by removing the skin mechanically by spraying, and a
subsequent fluorination step, it is possible to obtain surfaces that present θw higher than
150◦ and low adhesion of the water droplets. The generation of roughness by induced
crystallization has proven to be a very promising methodology that could be applied to
other semi-crystalline polymers or copolymers to develop microstructured surfaces at
large-scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings12020137/s1, Figure S1 SEM micrographs of the samples after immersion in different
solvents. Figure S2 Images for the PET film after and before the treatment. Figure S3 SEM micrographs
of samples Q-PET-DA-FS (up) and Q-PET-DN-FS (down).

https://www.mdpi.com/article/10.3390/coatings12020137/s1
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