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Abstract: In order to further improve the mechanical and tribological properties of AlCrTiSiN coating,
annealing treatment was carried out in this work. X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM), nanoindentation, scratch tester, friction, and a wear tester were used to characterize
and explore the effects of annealing temperature on the coating composition, phase component,
surface and cross-sectional morphology, and mechanical properties as well as the friction and wear
performance of the AlCrTiSiN coatings. The results indicated that after the vacuum annealing the con-
tent of amorphous phase decreased and the average size of nanocrystals increased in varying degrees.
With the increase in annealing temperature the coating surface became smoother and the cross-section
morphology changed little. The coating hardness first increased and then decreased. The adhesion
between the coating and substrate decreased after annealing, but the wear resistance was improved.
When the annealing temperature was 800 ◦C, the mechanical properties and wear resistance of the
resulting coating were the best. In this case, the coating hardness was 27 GPa, the critical load was
61 N, the friction coefficient was 0.66, and the wear rate was 1.97 × 10−3 µm3/N·µm−1.

Keywords: AlCrTiSiN coating; vacuum annealing; mechanical property; tribological performance

1. Introduction

Cutting tools often fail due to poor mechanical properties, wear, and high temperature
oxidation. Compared with the development of new materials to prepare a tool base, a hard
and tough protective coating on the tool surface can effectively improve the tool surface
performance and economic benefits [1–3]. As the typical representative of transition metal
nitride coatings, the research on TiN and CrN coatings started early and the technology
is mature. Because of excellent hardness and wear resistance, they are widely used in
machining, decoration, and other industries [4–8]. The appearance of TiN-coated cutting
tools brings great convenience and benefits to society. However, with the development
of modern industry people are putting forward more requirements for high efficiency,
and a high degree of precision in coated tools, high-speed heavy load cutting, and green
dry machining technology have gradually become mainstream in society [9,10]. The
thermal stability of TiN-coated tools is greatly tested by high-speed cutting conditions up
to 800 ◦C. TiAlN coating based on TiN coating has excellent high-temperature oxidation
resistance (900 ◦C). The shear strength and compressive strength of the coating can be
effectively improved by increasing the Al content in the coating, and the overall mechanical
properties can be further improved [11]. Doping Si and Cr elements into the coating can
effectively improve the mechanical, friction, and high temperature resistance properties of
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the coating [12,13]. Chang et al. [14] prepared AlTiN and AlTiSiN coatings by an acathodic
arc deposition system and compared them. It was found that the coating structure became
smoother and more compact after Si doping; moreover, the mechanical and tribological
properties of the coating were greatly improved. The TiAlCrN coating prepared by Ru
et al. [15] by arc ion plating technology showed an NaCl face-centered cubic structure; the
outer layer was rich in Al2O3 and the inner layer was rich in Cr2O3 + TiO2 under high
temperature oxidation conditions, which greatly improved the oxidation resistance of the
coating. Fu et al. [16] prepared CrAlTiN and CrAlTiSiN coatings by multi arc ion plating
technology. The comparative study found that the mechanical properties of the CrAlTiSiN
coatings increased significantly, and the cutting properties were further improved. The
cutting performance of the CrAlTiSiN superlattice tool coating prepared by Niu et al. [17]
was significantly higher than that of the AlCrN-coated tool.

Thermal stability is an important index for the long-term service of coatings, and many
coated parts cause local excessive temperature due to friction. If the thermal stability of the
coating is weak, the service life of the workpiece will be greatly reduced. The subsequent
heat treatment of the deposited coating at an appropriate temperature can effectively
release the residual stress, reduce the internal defects, homogenize the internal elements,
and further improve the performance of the coating [18,19].

Forsen et al. [20] studied the decomposition and phase transformation of TiCrAlN coat-
ings at different annealing temperatures. The results showed that the splitting of diffraction
peaks and the appearance of h-AlN in TiCrAlN coating with higher Al content were both
at a higher vacuum annealing temperature. The hardness of the TiAlN coating decreased
rapidly when the annealing temperature exceeded 950 ◦C, while the hardness of the TiAlN
coating remained high when the annealing temperature increased to 1100 ◦C after doping
the Cr element. Zhang et al. [21] carried out vacuum heat treatment on the TiAlSiN coating.
The results showed that properly increasing the annealing temperature can effectively
promote atomic diffusion and increase the density of the coating. When the annealing
temperature was 800 ◦C, it was found that the amorphous crystal structure appeared near
the surface of the TiAlSiN coating, the nanohardness and adhesion reached the maximum
value, and the wear resistance was the best. Flink et al. [22] annealed the TiAlSiN coating
at 800–1000 ◦C. During the process, h-(Al,Ti,Si)N gradually transformed into c-TiN and
the remaining h-(Al,Ti,Si)N through nucleation and growth. Compared with the original
coating, the grain of the (Ti0.33Al0.67)0.91Si0.09N coating was refined after annealing, and the
hardness was 30.1 ± 2.7 and 28.7 ± 2.4 GPa at 900 and 1000 ◦C, respectively, which was sig-
nificantly higher than that in the deposited state (23.6 ± 1.1 GPa). Zhang et al. [23] studied
the effect of annealing temperature on the properties of CrAlSiN superlattice coating. The
results showed that the fcc-CrN/h-(Al, Si)N structure of the coating remained unchanged
when the annealing temperature was 900 ◦C. When the annealing temperature was further
increased to 1100 ◦C, h-(Al, Si)N decomposed into h-AlN and n-Si3N4 and the hardness of
the coating decreased obviously.

At present, there are few reports on the preparation and subsequent treatment of
AlCrTiSiN coating. Therefore, the AlCrTiSiN coating was prepared by arc ion plating and
was annealed in a vacuum; the optimum annealing temperature was obtained; and the
effects of annealing temperature on the phase composition, mechanical properties, and
tribological properties of the coatings were systematically summarized. After annealing
at 800 ◦C, the mechanical properties and wear resistance of the coating were significantly
improved, and the hardness and wear rate were 27 GPa and 1.97 × 10−3 µm3/N·µm−1,
respectively. The treated coating can be widely used for tool surface protection.

2. Experimental Details
2.1. Experimental Materials and Annealing Experiment

Arc ion plating is based on an improved and developed version of evaporation and
sputtering coating technology [24]. Compared with magnetron sputtering technology, this
has the advantages of high energy, high deposition rate, and high adhesion of the prepared
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coating. Therefore, arc ion plating was used in the preparation of the AlCrTiSiN coating.
Superalloy (25 mm × 25 mm × 1.5 mm), cemented carbide (30 mm × 30 mm × 3.0 mm),
and a monocrystalline silicon wafer (30 mm × 30 mm × 0.67 mm) were chosen as substrate
materials. The surface quality of all substrates reached mirror-polished, and their roughness
was less than 100 nm, which was measured by a profilometer (D-300, KLA Tencor, Shanghai,
China). The samples were placed in acetone, deionized water, and alcohol, respectively, for
ultrasonic cleaning for 20 min, and then dried. The samples were placed on the sample
holder of the vacuum chamber. The background vacuum was pumped to 3.0 × 10−3 pa and
heated to 450 ◦C for glow and bombardment cleaning. In order to improve the adhesion
between the coating and the substrate, CrN was prepared as the transition layer. Finally,
AlCrTiSiN coatings were prepared in N2 (99.999%) + Ar (99.999%). The oxidation resistance
of the coating can be improved by properly increasing the Al content in the coating. During
the coating process, two targets (Al:Cr:Si = 6:3:1 and Al:Ti:Si = 6:3:1) were chosen to work
together. The specific deposition parameters are shown in Table 1.

Table 1. Deposition parameters of the AlCrTiSiN coatings prepared by the arc ion plating.

Parameter Values

Base pressure (Pa) 3.0 × 10−3

Deposition pressure (Pa) 3.0 × 10−1

Deposition temperature (◦C) 450
Deposition pressure (Pa) 2.8

Bias voltage (V) −100
Arc current of Cr cathode (A) 90

Arc current of AlCrSi cathode (A) 100
Arc current of AlTiSi cathode (A) 80

Ar:N2 gas flow ratio (sccm) 1:12
Substrate rotation speed (r·min−1) 40

Deposition time(min) 180
Distance between the target and substrate (mm) 285

Because C, CO, and W elements in the cemented carbide matrix are easy to diffuse
into the coating at high temperature, the mechanical properties of the coating are greatly
reduced [25]. Therefore, in this vacuum annealing experiment samples of superalloy and
a single crystal silicon wafer with AlCrTiSiN coating were placed in a ceramic crucible
and fixed in a vacuum tube furnace (TL1200 type, Muffle, Tianjin, China). Firstly, the
vacuum degree was pumped to 3.0 × 10−3 pa, then the control program was raised to the
set temperature at the heating rate of 10 ◦C/min for 1 h. Finally, it was cooled to room
temperature at the cooling rate of 4 ◦C/min. The specific experimental parameters are
shown in Table 2.

Table 2. Vacuum annealing parameters of the AlCrTiSiN coatings.

Parameters Values

Base pressure (Pa) 3.0 × 10−3

Insulation pressure (Pa) <1.5 × 10−3

Annealing temperature (◦C) 600/700/800/900
Heating rate (◦C·min−1) 10

Heat preservation time (min) 60

2.2. Structure Characterization and Performance Test

Phase identification and microstructure analysis of the AlCrTiSiN coating were car-
ried out by X-ray diffraction (XRD, XPERT-PRO, PANalytical, Almelo, The Netherlands)
with monochromatic Co Kα (λ = 1.79021 Å) radiation operated at 35 kV and 50 mA. The
analyzed range of diffraction angle 2θ was between 40◦ and 75◦. The surface and cross
section morphology of the AlCrTiSiN coating were observed by a scanning electron micro-
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scope (SEM, SU8010, Hitachi, Tokyo, Japan). The surface roughness of the coatings was
measured by the surface profilometer. The coating composition was determined by an
energy-dispersive spectrometer (EDS, GENESIS, EDAX, Philadelphia, America). A nano
indentation instrument (TTX NHT-3, Anton Paar, Graz, Austria) was used to repeatedly
test the hardness of the coatings before and after annealing, and an average of ten measure-
ments was taken as the final hardness value. A holding time of 10 s and a load of 10 mN
were applied. The trihedral Berkovich diamond tip with diameter of 200 µm was used
for the indentation test. Before the test, the diamond tip was calibrated with a standard
Si sample. The smooth and flat positions were chosen to test, and the distance between
the indentations was more than three times the diagonal length of the indentations. In
order to avoid the influence of the substrate effect on the hardness measurement value, the
indentation depth was less than 1/10 of coating thickness. The scratch tester (RST-3, Anton
Paar, Graz, Austria) was used to scratch the coating under 80 N load, and the LC2 value
was used to characterize the adhesion between the coating and the substrate. The high
temperature friction and a wear test machine (THT, Anton Paar, Graz, Austria) were used
to test the friction and wear of the wear pair (Al2O3 ball) with the hardness of 22 ± 1 GPa.
The wear test was carried out at 22 ± 3 ◦C; the friction radius was 8 mm and the applied
external force load was 4 N. Profilometer (D-300, KLA Tencor, Shanghai, China) was used
to measure the cross-sectional area of the corresponding coating after the friction test, and
then the wear rate of the coating was obtained according to the formula V = A/n·F, where
V is the wear rate, A is the cross-sectional area of worn scar, n is the number of friction
cycles, and F is the normal load. In order to analyze the wear mechanism of the coating,
the wear scar morphology of the coating was obtained by using a depth-of-field optical
microscope (VHX-1000C, Keyence, Osaka, Japan).

3. Results and Discussion
3.1. Composition and Phase Constituents

Table 3 shows the element composition of the AlCrTiSiN coatings as deposited and
after annealing at 800 ◦C. It can be seen that the coating composition remains basically
unchanged before and after annealing. Both coatings contain Al, Cr, Ti, Si, and N elements.
The content of Al and N in the coatings is the highest, about more than 30 at.%. changes;
the content of Ti and Cr is relatively low, about 10 at.%; and the content of Si is the lowest,
less than 10 at.%. The proportion of Al, Ti, Cr, and Si in the coatings is different from that
in the target, which was attributed to the different sputtering yields of each element in
reactive sputtering.

Table 3. Composition of the AlCrTiSiN coatings before and after annealing (at.%).

Status Al Cr Ti Si N

As-deposited 33.81 9.57 14.58 8.63 33.41

Annealing at 800 ◦C 34.95 10.91 14.92 6.75 32.47

Figure 1 shows the XRD patterns of the AlCrTiSiN coatings before and after annealing.
The diffraction peaks of Si simple substance and its compounds were not detected; they
may have existed in the amorphous phase, because the crystallization temperature of Si3N4
generally exceeds 1000 ◦C [26]. It can be seen from the figure that the components of
the AlCrTiSiN coatings remained the same before and after annealing, but the diffraction
peaks of the coatings gradually became stronger as the annealing temperature rose, which
indicates that the coating crystallinity increased after annealing. All the coatings are
composed of AlTi3, Ti0.76N, Al5Ti2, TiSi2, Al3Ti, and Al0.5Cr3Si0.5 phases, and most of the
metal ions were not fully nitride due to the limited N2 flow in reactive sputtering. As a
result, some Al-dominated intermetallic compounds with high hardness and good wear
resistance were formed. In addition, a certain amount of N element which could not be
detected by XRD may have existed in the amorphous phase.
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Figure 1. XRD patterns of the AlCrTiSiN coatings before and after annealing at different temperatures.

In order to quantitatively analyze the grain size of the coatings, the average grain
size (Ra) of a deposited and annealed AlCrTiSiN coating was calculated according to the
strongest diffraction peak of the AlTi3 phase in XRD patterns and Scheler’s Formula (1),
where λ is the diffraction wavelength of Kα—Co ray, with a value of 1.79021 Å; B is the half
height width of diffraction peak; and θ is the Bragg angle of the corresponding diffraction
peak. It can be seen from Figure 2 that the grain size of the AlTi3 phase after annealing was
increased compared with that of the as-deposited coating. When the annealing temperature
was 900 ◦C, the grain size of the AlTi3 phase increased to 101.2 nm, which was due to the
accelerated diffusion of the grain boundary during the heating process.

Ra = Kλ/Bcosθ (1)
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3.2. Morphologies

Annealing treatment can change the defect density and microstructure of the coating.
Figure 3 shows the surface morphology of the AlCrTiSiN coating as deposited and after
vacuum annealing at different temperatures. It can be seen from the figure that there are
many particles with different sizes on all the coating surfaces, which is the preparation fea-
ture of arc ion plating. With the increase in annealing temperature, the surface roughness of
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the coating decreases gradually, as shown in Figure 4, and when the annealing temperature
is 900 ◦C, the number of large particles on the coating surface decreases significantly, which
was consistent with the results of Chen et al. [27] This is because the melting point of Al is
low (660 ◦C). With the increase in annealing temperature, some macroparticles with a low
melting point melted on the coating surface, which reduced the coating roughness, and
some cavities and other defects disappeared [28].
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temperatures.

Figure 5 shows the cross-sectional morphology of the AlCrTiSiN coating as deposited
and annealed at 800 ◦C. It can be seen from the figure that the structure of the coating
annealed at 800 ◦C has no obvious change and still showed no characteristic growth
structure, indicating that the coating had high-temperature resistance. Compared with
Figure 5a,b, the film substrate interface of AlCrTiSiN coating is smooth after vacuum heat
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treatment. This was due to the fact that the energy of the particles in coating increases and
the thermal movement was intense at a higher temperature, which resulted in the diffusion
between CrN and AlCrTiSiN layers.
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Figure 5. Cross-section morphologies of the AlCrTiSiN coatings before and after annealing, (a) as-
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3.3. Mechanical Properties

Figure 6 shows the nanohardness of the AlCrTiSiN as-deposited coating and annealed
coating at different temperatures. It can be seen from the figure that the coating hardness
firstly increased gradually with the increase in annealing temperature. When the annealing
temperature arrived at 800 ◦C, the resulted coating possessed the maximum hardness of
27 Gpa. On the one hand, the higher annealing temperature enhanced the diffusion ability
of atoms in the coating, which made it easy to fill the gap vacancy in the coating and to
compact the coating structure. As a result, the atomic migration movement was intensified
and the micro uniformity of the coating was improved, which was conducive to an increase
in the coating hardness [21,29]. On the other hand, according to the research by Huang [30],
Ashith [31], and Meng [32], the partial amorphous phase in the coating could crystallize
after annealing, and the content of hard phase increased, which also helped improve the
coating hardness. When the annealing temperature was further increased to 900 ◦C, the the
hardness of the resulting coating decreased sharply to the lowest value of 22.3 GPa, which
was attributed to an increase in grain size in the coating. 
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At present, the scratch method is widely used in related fields, and LC2 is used to
characterize the adhesion between coating and substrate. Figure 7 shows the change
curve of the critical load of the AlCrTiSiN coating in its original state and at different
annealing temperatures. The values are all the average values of LC2 in each sample.
It is well known that proper residual compressive stress is beneficial to improve the
adhesion between coating and substrate; however, the deposition residual stress of the
coating was released after vacuum heat treatment, and the adhesion between coating
and substrate decreased significantly; the critical load of as-deposited coating was 82.1 N.
As mentioned above, vacuum annealing can improve the density of the coating, greatly
reduce the internal voids, and improve the adhesion between the coating and the substrate.
Therefore, with the increase in annealing temperature, the critical load increased gradually.
When the temperature was further increased to 900 ◦C, the grains inside the coating grew
further. When the coarse grains were subjected to large shear stress and compressive stress,
extrusion stress occurred between the grains, which led to transgranular fracture, which
was not conducive to the improvement of the mechanical properties of the coating [33]. In
addition, the critical load of the coating was at a high level as a whole. Due to the inherent
advantages of high energy of arc ion plating, the coating prepared by this method has a
higher critical load than other technologies. Figure 8 shows the scratch morphology of the
corresponding AlCrTiSiN coating before and after annealing. It can be seen from Figure 8f
that there is a fish scale crack in the scratch, which was due to the plastic deformation of
the coating against external force load. This stage did not appear in the coating scratch
after annealing, indicating that the adhesion between the coating and substrate decreased.
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morphologies (f) as deposited, (g) annealed at 800 ◦C.

3.4. Tribological Behaviors

Figure 9 shows the average friction coefficient of the AlCrTiSiN coatings before and
after annealing at different temperatures. They varied in the range of 0.66–0.69, and no ob-
vious difference could be observed. The as-deposited coating possessed the lowest friction
coefficient of 0.66. When the annealing temperature was 600 ◦C, the friction coefficient of
the resulting coating was 0.69. In the above two cases, the coating hardness was relatively
low, which would increase the contact area of the friction interface. However, the variation
in surface residual stress after annealing would also affect the friction coefficient to some
extent. When the annealing temperature was further increased to 700 and 800 ◦C, the
porosity in the coating decreased, the density was improved, and the friction coefficient
was stabilized at about 0.66. Although the coating hardness was high, the contact area
of friction interface was small. When the annealing temperature was further increased to
900 ◦C, the nanocrystals were too large, which led to a sharp decrease in coating hardness.
Similarly, this would increase the contact area of the friction interface and slightly increase
the friction coefficient.
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Figure 10 shows the wear rate of the AlCrTiSiN as-deposited coatings and vacuum
annealed coatings at different temperatures. It can be seen from the figure that the wear rate
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of the as-deposited coating was about 1.97 × 10−3 µm3/N·µm−1. After annealing, the wear
resistance of the resulting coatings was improved significantly. The reason for this was that
at high annealing temperature the diffusion ability of atoms in the coating was enhanced,
especially for the N atoms with small radius, which filled in the internal defects of the
coating and made the coating more compact so as to reduce the surface roughness of the
coating. Therefore, the contact stress between the friction pair was reduced and the third
body wear phenomenon was improved. As we know, the hardness of the coating directly
affected the contact area of friction interface, so it also affected the wear resistance of the
coating. As mentioned above, annealing at an appropriate temperature would reduce the
content of the amorphous phase in the coating, increase the average size of the nanocrystals,
and improve their hardness, which helped improve the wear resistance of the coating [31].
Although the coating hardness after annealing at 600 ◦C was lower than that of coating
annealed at 700 and 800 ◦C, the wear rates of the three coatings were similar, which may be
due to the variation of residual stresses during annealing treatment. When the annealing
temperature rose to 900 ◦C, the wear resistance of the resulting coating was weakened due
to its lower hardness.
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Figure 11 shows the wear morphologies of the AlCrTiSiN coatings before and after
annealing at different temperatures. It was obvious that the width of worn scar in as-
deposited coating was the largest; the reason was that the hardness of as-deposited coating
was the lowest, and the contact area between the Al2O3 ball and the coating was large,
which accelerated the wear of the coating. In contrast, after annealing at 600 and 700 ◦C,
the hardness and density of the coating increased, which slowed down the wear of the
coating, and the wear width was narrow. When the annealing temperature rose to 800 ◦C,
the wear rate of the coating was the lowest and the wear width was relatively wide. This
was because the hardness of the coating was the highest and the friction wear of the wear
pair was intensified after many cycles; thus, the contact area between the friction pair and
the coating increased, leaving a wide wear mark. Through careful observation, it was found
that there are micro furrows in all the wear marks, which was due to the coating particles
falling off and participating in the friction, resulting in abrasive wear. The residual blue
and dark debris in the wear marks indicated that there was oxidation wear in the friction
process. Moreover, the largest amount of wear debris remains in Figure 11e, indicating that
the oxidation wear of the coating was intense and the wear resistance was reduced at this
annealing temperature. This was due to the release of the internal compressive stress of the
coating at high annealing temperature, and the poor mechanical properties of the coating
at this time are not conducive to the improvement of the wear resistance of the coating.
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The worn morphology and EDS analysis of the AlCrTiSiN coating annealed in vacuum
at 800 ◦C are shown in Figure 12. The results showed that the atomic fractions of the
chemical elements in the test area are Al 21.4%, Cr 14.61%, Ti 9.21%, Si 3.39%, O 36.24%,
and N 15.15%. All these were elements in the coating, and no metal elements in a superalloy
substrate (Co, Mo, W, et al.) were found, which indicated that the coating was not worn
through. The test area contained a lot of O elements, which was due to the formation of
oxides at friction interface during the friction process, indicating that the coating wear
mechanism included oxidation wear [34].
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4. Conclusions

In this work the microstructure, composition, and mechanical and tribological prop-
erties of AlCrTiSiN coatings before and after annealing were studied. Some important
conclusions were drawn:

(1) After vacuum annealing, the average size of nanocrystals showed a clear upward
trend with the increase in annealing temperature. When the annealing temperature was
900 ◦C, the maximum grain size was 101.2 nm.

(2) With the increase in annealing temperature, the surface roughness of the coating
decreased, and when the annealing temperature was 900 ◦C, the quantity and size of
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macroparticles on the surface decreased significantly. The coating microstructure had no
obvious change before and after annealing.

(3) The comprehensive properties of AlCrTiSiN coating were improved after the vac-
uum annealing treatment. The mechanical properties and wear resistance of the AlCrTiSiN
coating were the best when the annealing temperature was 800 ◦C. In this case, the coating
hardness was 27 GPa, the critical load was 61 N, the friction coefficient was 0.66, and the
wear rate was 1.97 × 10−3 µm3/N·µm−1.

(4) After annealing at 800 ◦C, the hardness and tribological performance of the AlCr-
TiSiN coatings were slightly inferior to those of the TiAlSiN coatings prepared by Zhang
et al. [21], so the preparation technology and heat treatment process of the AlCrTiSiN
coatings were expected to be further optimized.
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