Comparison of Aqueous and Gelled 3.5% NaCl Electrolytes for Assessing the Corrosion Resistance of Thermal Spray Stainless-Steel Coatings in Electrochemical Corrosion Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Production and Characterization
2.2. Corrosion Testing
3. Results and Discussion
3.1. AISI 316L Powder and HVAF Coating Characterization
3.2. Poteniodynamic Polarization Test Results in 3.5% NaCl Solution
3.3. Potentiodynamic Polarization Test Results in 3.5% NaCl Gel Electrolyte
3.4. Summary of the Corrosion Results in 3.5% NaCl Aqueous and Gel Electrolyte
4. Conclusions
- The oxide agglomerates and oxidized splat boundaries are weak points and reduce the corrosion resistance of the HVAF-sprayed AISI 316L coatings.
- The infiltration of the coating microstructural characteristics is prevented by using gel electrolytes.
- Followed from this, the corrosion characteristic values such as OCP, ECorr, and iCorr obtained are independent of whether the AISI 316L HVAF coating was deposited on mild steel or stainless-steel substrates when using gel electrolyte.
- In contrast, the aqueous electrolyte can penetrate the coating up to the substrate and hence, the characteristic values are significantly influenced.
- The NaCl gel electrolyte used allows the desired corrosive effect of the pitting attack to be mimicked.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kauss, N.; Heyn, A.; Halle, T.; Rosemann, P. Detection of sensitization on aged lean duplex stainless steel with different electrochemical methods. Electrochim. Acta 2019, 317, 17–24. [Google Scholar] [CrossRef]
- Burkert, A.; Klapper, H.S.; Lehmann, J. Novel strategies for assessing the pitting corrosion resistance of stainless steel surfaces. Mater. Corros. 2013, 64, 675–682. [Google Scholar] [CrossRef]
- Rosemann, P.; Müller, T.; Babutzka, M.; Heyn, A. Influence of microstructure and surface treatment on the corrosion resistance of martensitic stainless steels 1.4116, 1.4034 and 1.4021. Mater. Corros. 2015, 66, 45–53. [Google Scholar] [CrossRef]
- Ramírez-Barat, B.; Cano, E. Agar versus agarose gelled electrolyte for in situ corrosion studies on metallic cultural heritage. ChemElectroChem 2019, 6, 2553–2559. [Google Scholar] [CrossRef]
- Monrrabal, G.; Ramírez-Barat, B.; Bautista, A.; Velasco, F.; Cano, E. Non-destructive electrochemical testing for stainless-steel components with complex geometry using innovative gel electrolytes. Metals 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Langklotz, U.; Babutzka, M.; Schneider, M.; Burkert, A. The combination of minimally invasive electrochemical investigation and FTIR-spectroscopy to analyse atmospheric corrosion product layers on zinc. Mater. Corros. 2019, 70, 1314–1325. [Google Scholar]
- Monrrabal, G.; Guzmán, S.; Hamilton, I.E.; Bautista, A.; Velasco, F. Design of gel electrolytes for electrochemical studies on metal surfaces with complex geometry. Electrochim. Acta 2016, 220, 20–28. [Google Scholar] [CrossRef]
- Ramírez-Barat, B.; Cano, E.; Letardi, P. Advances in the design of a gel-cell electrochemical sensor for corrosion measurements on metallic cultural heritage. Sens. Actuat. B Chem. 2018, 261, 572–580. [Google Scholar] [CrossRef]
- Subbiah, K.; Velu, A.; Kwon, S.J.; Lee, H.S.; Rethinam, N.; Park, D.J. A novel in-situ corrosion monitoring electrode for reinforced concrete structures. Electrochim. Acta 2018, 259, 1129–1144. [Google Scholar] [CrossRef]
- Heyn, A. Comparison of liquid and gel electrolytes for the investigation of pitting corrosion on stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 2020, 882, 012010. [Google Scholar] [CrossRef]
- Spark, A.J.; Cole, I.; Law, D.; Marney, D.; Ward, L. Investigation of agar as a soil analogue for corrosion testing. Mater. Corros. 2016, 67, 7–12. [Google Scholar] [CrossRef]
- Valet, S.; Burkert, A.; Ebell, G.; Babutzka, M. Determination of the corrosion product layer resistance on zinc and electrolytically galvanized steel samples using gel electrolytes. Electrochim. Acta 2021, 385, 138191. [Google Scholar] [CrossRef]
- Kutschmann, P.; Lindner, T.; Grimm, M.; Lampke, T. Electrochemical testing of thermal spray coatings using gel electrolytes. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1147, 012031. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Markocsan, N. Electrochemical behavior of bilayer thermal-spray coatings in low-temperature corrosion protection. Coatings 2017, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Suegama, P.H.; Fugivara, C.S.; Benedetti, A.V.; Fernández, J.; Delgado, J.; Guilemany, J.M. Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution. Corros. Sci. 2005, 47, 605–620. [Google Scholar] [CrossRef]
- Milanti, A.; Koivuluoto, H.; Vuoristo, P. Influence of the spray gun type on microstructure and properties of HVAF sprayed Fe-based corrosion resistant coatings. J. Spray Tech. 2015, 24, 1312–1322. [Google Scholar] [CrossRef]
- Nascimento, A.R.C.; Gateman, S.M.; Mauzeroll, J.; Savoie, S.; Schulz, R.; Moreau, C. Electrochemical behavior, microstructure, and surface chemistry of thermal-sprayed stainless-steel coatings. Coatings 2019, 9, 835. [Google Scholar] [CrossRef] [Green Version]
- Dobler, K.; Kreye, H.; Schwetzke, R. Oxidation of stainless steel in the high velocity oxy-fuel process. J. Spray Tech. 2000, 9, 407–413. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, H.S.; Jang, J.W.; Yi, S. Corrosion behavior in a 3.5% NaCl solution of amorphous coatings prepared through plasma-spray and cold-spray coating processes. Met. Mater. Int. 2014, 20, 1053–1057. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; López, A.L.; Torres, B.; Rams, B. 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection. Surf. Coat. Technol. 2016, 287, 9–19. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Sotelo-Mazon, O.; Luna-Ramirez, A.; Porocayo-Palafox, E.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Electrochemical behavior of NiAl and Ni3Al intermetallic coatings in 1.0 M NaOH Solution. Int. J. Electrochem. Sci. 2015, 10, 6241–6256. [Google Scholar]
- Wu, J.; Zhang, S.D.; Sun, W.H.; Wang, J.Q. Influence of oxidation related structural defects in localized corrosion in HVAF-sprayed Fe-based metallic coatings. Surf. Coat. Technol. 2018, 335, 205–218. [Google Scholar] [CrossRef]
- Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel. Mater. Des. 2012, 41, 282–288. [Google Scholar] [CrossRef]
- Zeng, Z.; Sakoda, N.; Tajiri, T.; Kuroda, S. Structure and corrosion behavior of 316L stainless steel coatings formed by HVAF spraying with and without sealing. Surf. Coat. Tech. 2008, 203, 284–290. [Google Scholar] [CrossRef]
- Bolelli, G.; Lusvarghi, L.; Barletta, M. Heat treatment effects on the corrosion resistance of some HVOF-sprayed metal alloy coatings. Surf. Coat. Technol. 2008, 202, 4739–4847. [Google Scholar] [CrossRef]
- Amudha, A.; Shashikala, H.D.; Nagaraja, H.S. Corrosion behavior and characterization of thermal sprayed coating of nickel chromium cermet on low carbon steel. Mater. Today 2018, 5, 16100–16105. [Google Scholar]
- Orório, W.R.; Freitras, E.S.; Garcia, A. EIS and potentiodynamic polarization studies on immiscible monotectic Al-In alloys. Electrochim. Acta 2013, 102, 436–445. [Google Scholar]
- Zhang, X.L.; Jiang, Z.H.; Yao, Z.P.; Song, Y.; Wu, Z.D. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion density. Corros. Sci. 2009, 51, 581–587. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosions rates measured by Tafel extrapolation method. Corros. Sci. 2005, 45, 3202–3215. [Google Scholar] [CrossRef]
- Chidambaram, D.; Clayton, C.R.; Dorfman, M.R. Evaluation of the electrochemical behavior of HVOF-sprayed alloy coatings. Surf. Coat. Technol. 2004, 176, 307–317. [Google Scholar] [CrossRef]
- Kuroda, S.; Fukushima, T.; Sasaki, M.; Kodama, T. Microstructure and corrosion resistance of HVOF sprayed 316L stainless steel and hastelloy C coatings. Mater. Trans. 2002, 43, 3177–3183. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutschmann, P.; Grimm, M.; Lindner, T.; Ernst, K.R.; Schwabe, O.; Pluta, C.; Lampke, T. Comparison of Aqueous and Gelled 3.5% NaCl Electrolytes for Assessing the Corrosion Resistance of Thermal Spray Stainless-Steel Coatings in Electrochemical Corrosion Tests. Coatings 2022, 12, 344. https://doi.org/10.3390/coatings12030344
Kutschmann P, Grimm M, Lindner T, Ernst KR, Schwabe O, Pluta C, Lampke T. Comparison of Aqueous and Gelled 3.5% NaCl Electrolytes for Assessing the Corrosion Resistance of Thermal Spray Stainless-Steel Coatings in Electrochemical Corrosion Tests. Coatings. 2022; 12(3):344. https://doi.org/10.3390/coatings12030344
Chicago/Turabian StyleKutschmann, Pia, Maximilian Grimm, Thomas Lindner, Kerstin Raffaela Ernst, Olga Schwabe, Christian Pluta, and Thomas Lampke. 2022. "Comparison of Aqueous and Gelled 3.5% NaCl Electrolytes for Assessing the Corrosion Resistance of Thermal Spray Stainless-Steel Coatings in Electrochemical Corrosion Tests" Coatings 12, no. 3: 344. https://doi.org/10.3390/coatings12030344
APA StyleKutschmann, P., Grimm, M., Lindner, T., Ernst, K. R., Schwabe, O., Pluta, C., & Lampke, T. (2022). Comparison of Aqueous and Gelled 3.5% NaCl Electrolytes for Assessing the Corrosion Resistance of Thermal Spray Stainless-Steel Coatings in Electrochemical Corrosion Tests. Coatings, 12(3), 344. https://doi.org/10.3390/coatings12030344