Evolution of WSe2 Flakes Synthesized by Thermally Assisted Conversion Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Microscopy (OM) and Atomic Force Microscopy (AFM) Analysis
3.2. Raman Analysis
3.3. Photoluminescence and UV-VIS Spectroscopy
3.4. Electrical and Photo-Electrical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Xu, S.; Shen, J.; Long, G.; Wu, Z.; Bao, Z.Q.; Liu, C.C.; Xiao, X.; Han, T.; Lin, J.; Wu, Y.; et al. Odd-integer quantum Hall states and giant spin susceptibility in p-type few-layer WSe2. Phys Rev Lett. 2017, 18, 067702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscher, N.D.; Carmalt, C.J.; Parkin, I.P. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—Highly hydrophobic sticky surfaces. J. Mater. Chem. 2006, 16, 122–127. [Google Scholar] [CrossRef]
- Cheng, Q.; Pang, J.; Sun, D.; Wang, J.; Zhang, S.; Liu, F.; Chen, Y.; Yang, R.; Liang, N.; Lu, X.; et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697. [Google Scholar] [CrossRef]
- Briggs, N.; Subramanian, S.; Lin, Z.; Li, X.; Zhang, X.; Zhang, K.; Xiao, K.; Geohegan, D.; Wallace, R.; Chen, L.-Q.; et al. Robinson A Roadmap for Electronic Grade 2-Dimensional Materials. 2D Mater. 2019, 6, 022001. [Google Scholar] [CrossRef]
- Liu, F. Mechanical exfoliation of large area 2D materials from vdW crystals. Prog. Surf. Sci. 2021, 96, 100626. [Google Scholar] [CrossRef]
- Wong, S.L.; Liu, H.; Chi, D. Recent progress in chemical vapor deposition growth of two-dimensional transitionmetal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 2016, 62, 9–28. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Shenoy, V.B.; Tang, M.; Lou, J. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater. Today 2020, 40, 132–139. [Google Scholar] [CrossRef]
- Rajan, A.G.; Warner, J.H.; Blankschtein, D.; Strano, M.S. Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10, 4330–4344. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Zhu, M.; Zhao, Y.; Liu, H.; Li, M.; Zheng, J.; Xu, H.; Jiang, Y. Chemical vapor deposition growth of sub-centimeter single crystal WSe2 monolayer by NaCl-assistant. Nanotechnology 2019, 30, 034001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ugeda, M.M.; Jin, C.; Shi, S.F.; Bradley, A.J.; Recio, A.M.; Ryu, H.; Kim, J.; Tang, S.; Kim, Y.; et al. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. Nano Lett. 2016, 16, 2485–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatensby, R.; McEvoy, N.; Lee, K.; Hallam, T.; Berner, C.N.; Rezvani, E.; Winters, S.; O’Brien, M.; Duesberg, G.S. Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 2014, 297, 139–146. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y.; et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2012, 7, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Browning, P.; Eichfeld, S.; Zhang, K.; Hossain, L.; Lin, Y.-C.; Wang, K.; Lu, N.; Waite, A.R.; Voevodin, A.A.; Kim, M.; et al. Large-area synthesis of WSe2 from WO3 by selenium–oxygen ion Exchange. 2D Mater. 2015, 2, 014003. [Google Scholar] [CrossRef]
- Wu, D.; Min, T.; Zhou, J.; Li, C.; Ma, G.; Lu, G.; Xia, M.; Gu, Z. Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD. Sci. Rep. 2017, 7, 15166. [Google Scholar] [CrossRef] [Green Version]
- Peters, L.; Coileáin, C.Ó.; Dluzynski, P.; Siris, R.; Duesberg, G.S.; McEvoy, N. Directing the Morphology of Chemical Vapor Deposition-Grown MoS2 on Sapphire by Crystal Plane Selection. Phys. Status Solidi A 2020, 217, 2000073. [Google Scholar] [CrossRef]
- Fang, H.; Chuang, S.; Chang, T.C.; Takei, K.; Takahashi, T.; Javey, A. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 2012, 12, 3788–3792. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Yang, C.-L.; Du, Y.; Lai, C.-H. Scalable Epitaxial Growth of WSe2 Thin Films on SiO2/Si via a Self-Assembled PtSe2 Buffer Layer. Sci. Rep. 2019, 9, 8017. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Berseth, P.A.; Lin, Q.; Chiritescu, C.; Cahill, D.G.; Mavrokefalos, A.; Shi, L.; Zschack, P.; Anderson, M.D.; Anderson, I.M.; et al. Synthesis and properties of turbostratically disordered, ultrathin WSe2 films. Chem. Mater. 2010, 22, 2750–2756. [Google Scholar] [CrossRef]
- del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S.; Nguyen, M.A.; Mallouk, T.E.; Terrones, M.; Pimenta, M.A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 2014, 8, 9629–9635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677. [Google Scholar] [CrossRef] [Green Version]
- Terrones, H.; Del Corro, E.; Feng, S.; Poumirol, J.M.; Rhodes, D.; Smirnov, D.; Pradhan, N.R.; Lin, Z.; Nguyen, M.A.T.; Elıas, A.L.; et al. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Sci. Rep. 2014, 4, 4215. [Google Scholar] [CrossRef]
- Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2013, 8, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Andrews, K.; Bowman, A.; Hong, T.; Koehler, M.; Yan, J.; Mandrus, D.; Zhou, Z.; Xu, Y.-Q. High-Performance WSe2 Phototransistors with 2D/2D Ohmic Contacts. Nano Lett. 2018, 18, 2766–2771. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Z.; Du, X.; Safdal, M.; Jiang, C.; He, J. Atomic-layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property. IOP Nanotechnol. 2013, 24, 465705. [Google Scholar] [CrossRef] [Green Version]
- Ahn, G.H.; Amani, M.; Rasool, H.; Lien, D.-H.; Mastandrea, J.P.; Joel, W.A., III; Dubey, M.; Chrzan, D.C.; Minor, A.M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Yu, T.; Yang, G.; Chen, H.; Zhang, C.; Feng, Q.; Ma, J.; Liu, W.; Xu, H.; et al. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study. Nanotechnology 2018, 29, 124001. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, B.; Liu, Y.; Tang, W.; Nai, C.T.; Li, L.; Zheng, J.; Gao, L.; Zheng, Y.; Shin, H.S.; et al. Chemical vapor deposition of large sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722–6727. [Google Scholar] [CrossRef] [PubMed]
- Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D.R.T. Photoluminescenc emission and Raman response of monolayer MoS2, MoSe2 and WSe2. Opt. Express 2013, 21, 1908–4916. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Castillo, A.; Haye, E.; Acosta, S.; Bittencourt, C.; Colomer, J.-F. Synthesis and Characterization of Highly Crystalline Vertically Aligned WSe2 Nanosheets. Appl. Sci. 2020, 10, 874. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y.; Zhou, C. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A.T.S. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, R.; Guo, S.; Weller, D.; Quan, S.; Yu, J.; Jiang, J.; Wang, Y. Hexagonal WSe2 Nanoplates for Large-Scale Continuous Optoelectronic Films. ACS Appl. Nano Mater. 2021, 4, 5014–5021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova, V.; Buchkov, K.; Videva, V.; Dionisiev, I.; Minev, N.; Strijkova, V.; Dimov, D.; Dikov, H.; Avramova, I.; Rafailov, P.; et al. Evolution of WSe2 Flakes Synthesized by Thermally Assisted Conversion Method. Coatings 2022, 12, 353. https://doi.org/10.3390/coatings12030353
Marinova V, Buchkov K, Videva V, Dionisiev I, Minev N, Strijkova V, Dimov D, Dikov H, Avramova I, Rafailov P, et al. Evolution of WSe2 Flakes Synthesized by Thermally Assisted Conversion Method. Coatings. 2022; 12(3):353. https://doi.org/10.3390/coatings12030353
Chicago/Turabian StyleMarinova, Vera, Krastyo Buchkov, Vladimira Videva, Irnik Dionisiev, Nikolay Minev, Velichka Strijkova, Deyan Dimov, Hristosko Dikov, Ivalina Avramova, Peter Rafailov, and et al. 2022. "Evolution of WSe2 Flakes Synthesized by Thermally Assisted Conversion Method" Coatings 12, no. 3: 353. https://doi.org/10.3390/coatings12030353
APA StyleMarinova, V., Buchkov, K., Videva, V., Dionisiev, I., Minev, N., Strijkova, V., Dimov, D., Dikov, H., Avramova, I., Rafailov, P., & Dimitrov, D. (2022). Evolution of WSe2 Flakes Synthesized by Thermally Assisted Conversion Method. Coatings, 12(3), 353. https://doi.org/10.3390/coatings12030353