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Abstract: Aluminum-based metal matrix composites with single or multiple ceramic reinforcements
are finding application in the aerospace and automobile industries. In this research work, novel
AA7150-B4C (aluminium7150 alloy–Boron carbide) nanocomposites were successfully fabricated,
through the liquid metallurgy route via stir casting method, with the incorporation of B4C nanoparti-
cles with different weight percentages using a novel sequence of a vortex technique and a double
stir casting process with ultrasonication. The formed composites have been thoroughly studied for
microstructure refinement, nano-particulate distribution, and bonding with the matrix by making
use of the optical microscopy (OM) and scanning electron microscopy (SEM) studies (respectively).
In addition, the composites were analyzed for the density, porosity, and elemental composition. Fur-
ther, the composites were tested for the investigation of mechanical properties, like micro-hardness
and tensile strength, to investigate the influence of ultrasonic vibration on the arrangement of B4C
nano-particulates. The analysis indicated that the mechanical properties of the AA7150-B4C nanocom-
posites in as-cast condition significantly improved with a gain of 57.7% in strength and 24.5% in
hardness compared to the native AA7150 material.

Keywords: ultrasonic vibration; nanocomposite; boron carbide; AA7150; double stir casting

1. Introduction

Aluminum (Al)-based metal matrix composites (MMCs) are extensively used in au-
tomobile, domestic, transportation, and aerospace industries because of their superior
thermal conductivity, stiffness, resistance to wear, etc. In general, the Al alloys are available
in various series, such as 2xxx, 5xxx, 6xxx, and 7xxx. The 2xxx, 5xxx, and 7xxx alloy series
are heat treatable, as they gain their strength from alloying. Prater [1] described that the
7xxx series alloys are the most frequently used materials in aerospace and automobile
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applications. Similarly, Li et al. [2] chiefly used an Al-Zn-Cu-Mg composite because of
its superior corrosion resistance, as well as strength to weight ratio. In addition, Veeresh
Kumar et al. [3], in their investigation, revealed that further improvements in mechanical
and tribological characteristics can be obtained by using hard phase ceramic reinforcement
particles. Gisele Hammes et al. used hexagonal boron nitride (hBN) as a solid lubricant
in Fe-Si-C matrix material to enhance the wear resistance [4]. Several other materials,
like graphite [5], silicon carbide (SiC) [6], aluminum oxide (Al2O3) [7], etc., are also be-
ing used as the reinforcement particles in Al matrices. However, only limited literature
on composites reinforced with boron carbide (B4C) nanoparticles is available, which is
due to the high costs and complexions that occur during the fabrication process of these
nanoparticles. The B4C nanoparticles possess attractive properties and are the right choice
to use as reinforcement because of their high shock resistance, high melting point and wear
resistance, high resistance to a chemical agent, and low specific density (2.52 g/cc).

Mechanical stirring is a conventional and well-known method for the mixing of micro-
ceramic reinforcement of particles in molten liquid to produce MMCs. In the case of
ultra-fine particles, it is a very challenging task to mix and produce uniform distribution
due to the large surface area to volume ratio, which leads to floating on the metal surface
and forming the clusters inside the liquid metal. To overcome the floating of nanoparticles,
the vortex method has been developed as it produces MMCs in a highly economical way.
Additionally, the vortex method helps to avoid the floating of ultra-fine particles on the
liquid surface and redirects the particles into the liquid for uniform dispersion. This vortex
can be created through a mechanical impeller where the preheated reinforcements are
incorporated into the vortex, creating a molten liquid to improve the wetting characteristics
among alloy melt and nanoparticles. Two-step stir casting is one of the well-known
approaches, which maintains a uniform distribution of ceramic reinforcement of particles
in alloy liquid materials. The composite quality can be improved through this technique
through a legitimate selection of process parameters, like preheating temperature of ceramic
reinforcements, stirring speed, and pouring temperature of the melt. The nanoparticles
tend to form high agglomerations and clusters when they are involved with dense liquids.
To minimize these problems, Jayakrishnan et al. [8] stated the incorporation of ultrasonic
vibrations in molten liquid in their work and analyzed degassing, nanoparticle distribution,
and grain refinement properties.

Guo et al. [9] investigated the influence of ball-milled B4C nanoparticles on Al-B4C
nanocomposite powders and, from the results, the size of matrix powder was found to
be decreased with an increase of wt.% of B4C and milling time. Further, the grain and
crystallite sizes were found to be decreased with increased B4C particle content, along
with a transformation to nanograin equiaxed morphology. Alizadeh et al. [10] used the
planetary ball milling technique to produce B4C nanoparticles (20 h) and also fabricated
the powders of Al%—4 wt.% B4C nanocomposite. The mechanical milling processing
time was optimized by using density measurements, where the results confirmed that
the milling process enhanced the particle content that leads to some fractures and had a
hardening effect. It was also confirmed that the uniform distribution of particles influences
the hardness of the nanocomposite and the effect of pressure on yield strength through the
modified Heckel equation. Jiang et al. [11] fabricated B4C/BN nanocomposites through
the hot-pressing process and chemical deposition, i.e., the B4C micro-particles were coated
with BN nanoparticles through a chemical reaction of CO(NH2)2 and H3BO3 at high
temperatures. The investigation was done for the uniform distribution of particles within
the composite and grain boundaries. From the results, the fracture toughness and fracture
strength of the nanocomposite was found to have decreased with increased content of hBN
and also affected the hardness of the nanocomposite significantly. In addition, the formed
B4C/hBN nanocomposite showed excellent machinability at more than 20 wt.% of hBN
content. Yaotian Yan et al. [12] developed heterogeneous AgCu alloy material structures
with Ti and In reinforcements. the influence of filler materials on the interfacial structure and
boundary properties of produced metal joints was observed and the results also revealed
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the bonding strength and mechanical performance of the produced heterogeneous metal
joint. Chennakesava Reddy [13] analyzed the SiC particle effect on AA6061-SiC composite
material, which is fabricated through the stir casting method. From the results obtained, it
was noticed that the strength of the composite increased with the content of reinforcement
but decreased with an increase of particle size. Qiang et al. [14] manufactured pure Al-SiC
composites through ultrasonic vibration (UV)-assisted casting by varying reinforcement
volume percentage. The mechanical and microstructural properties were studied at ambient
and elevated temperatures.

In Harichandran et al.’s [15] process, high energy ultrasonic waves were introduced
to the melt pool to generate a nonlinear effect called transient cavitation and acoustic
streaming. Acoustic streaming, as well as the transient cavitation process, involves
forming the cavitation bubbles and developing energy levels that are much greater than
the energy levels produced by the mechanical stirring process. Therefore, these transient
cavitations and macroscopic streaming tend to disperse nanoparticles to prevent agglom-
eration and enhance the wettability of reinforcement in a molten liquid. From the above
discussion, it is also evident that few research works have studied the manufacture
of B4C nanocomposites through the ultrasonic-assisted stir casting process and very
limited work has been done to fully characterize it. Therefore, the present work deals
with the novel fabrication method to produce uniformly distributed B4C-reinforced
nanocomposites with a sequence of vortex formation, double stir casting, and ultrasonic
probe-assisted vibration. It also deals with the study of microstructure and mechanical
characterization of AA7150-B4C nanocomposites.

2. Materials and Methods

Due to its design flexibility, low density, and easy casting, the aluminium7150 al-
loy (AA7150) was used as a matrix material and the elemental weight percentages were
as shown in Table 1. For this, the nano B4C (boron carbide) was used as a secondary
phase reinforcement particle (40–60 nm and >99% purity) to produce the nanocomposite
of AA7150-B4C.

Table 1. Chemical composition (%) of AA7150 (Madhukar et al., 2019).

Chemical Composition Mg Zn Cu Fe Zr Si Mn Al

AA7150 2.56 6.37 2.25 0.12 0.11 0.08 0.009 Balance (88.501)

Figure 1 shows the schematic diagram of the experimental setup, consisting of an
electric resistance heating furnace and an ultrasonication probe. A mechanical stirrer made
up of stainless steel (SS 310) with a length of 165 mm and diameter of 65 mm was used to
produce the nanocomposites. A thermocouple was used to monitor temperature during
the process of melting. An air compressor was used to generate the compressed air and this
air was used for cooling and to control the up and down movement of the ultrasonication
probe during the sonication process. Argon gas was allowed to pass onto the molten liquid
surface to avoid the oxidation of aluminum during the casting process. The AA7150 ingots
of 600 g were melted in an arc furnace at 750 ◦C and choked for an hour. It was stirred
mechanically for homogeneous mixing of the melt and then a degassing tablet was used
to avoid unwanted gases and K2TiF6 was used as a flux to improve the wettability of
B4C nanoparticles.

The B4C particles were preheated in an electrical furnace (Figure 1b) to avoid mois-
ture content and to improve the wettability of particles to metal liquid. The preheated
B4C nanoparticles were added at many different percentages (0.5%, 1.0%, 1.5%, 2.0 wt.%)
to the liquid metal using the vortex method during mechanical stirring and it was
performed for 20 min via 2 steps. Each stirring process was 10 min and between the
processes, molten metal was allowed to reach a semisolid state. During the mechanical
stirring process, the stirrer speed was controlled to maintain the vortex (speed approx.
350–400 rpm). After the two-step stirring process, the ultrasonic probe was dipped (3/4
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of liquid) into the melt and allowed to vibrate. In this process, high-energy-intensity
waves (frequency of 20 KHz and pulse interval of 10 s) were generated and the produced
wave energy was more than that of aluminum liquid bond energy, which breaks the
liquid metal bonds to disperse the particles and also creates the micro-cavitation bub-
bles in a liquid melt. This high-energy cavitation bubble, which was high in pressure
(>1000 atm) and high in temperature (5000 ◦C), broke into clusters and agglomerations
due to continuous wave transformation. Therefore, the broken agglomerations spread
into the liquid pool. After the ultrasonic vibration process, 5 min of stirring action took
place to distribute the broken particles uniformly throughout the melt. The casting liquid
was transferred into a preheated die and allowed to cool for the next 24 h. The solidified
material blocks were machined as per ASTM standards.
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Figure 1. (a) Schematic representation of ultrasonic probe-assisted stir casting and (b) the preheating
chamber used for the formation of AA7150-B4C nanocomposites.

2.1. Sample Preparation

Samples were mirror polished on four different grades of emery paper followed by
disc polishing and etching. To study the microstructure analysis through OM/SEM initially,
samples were polished manually on I/0, II/0, III/0, and IV/0 silicon carbide emery papers.
The direction of polishing changed from one grade to the other. Alternatively, perpendicular
directions were selected to eliminate all the hatching lines on the surface of the specimen.
Then, the samples were disc polished for 10 min, where aluminum oxide powder was used
for the better surface finish while the mirror-like finish was obtained after disc polishing.
The polished samples, as shown in Figure 2, were etched with a solution of Kellar etchant,
which elevates grain boundaries (25–27 min) on the surface, and the samples were then
cleaned with acetone.
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Figure 2. Microstructure samples of AA7150-B4C were prepared (as per 1.5 aspect ratio, dimensions
are in mm) with different weight percentages of B4C.

2.2. Microstructure Study

Optical microscopy (OM) studies were carried out on AA7150-B4C nanocomposites.
The optical microscope (QUASMO, QX-4RT, Haryana, India) uses visible light and a system
of lenses to show surface morphology (i.e., the formation of grain distribution) at different
magnification views. The microscopic analysis was done for all five samples, (i.e., pure,
0.5, 1.0, 1.5, 2.0 wt.% B4C-reinforced composite) and the images were taken at different
magnification values. Scanning electron microscopy (SEM; Model No.: Vega-3 LMU,
Tescan Analytics-Tescan Orsay Holding, Brno-Kohoutovice, Czech Republic) was used to
investigate the distribution pattern of particles and the fracture surface. Energy-dispersive
spectroscopy (EDS; Model No.: Ultim® Max, Oxford Instruments, High Wycombe, UK) for
elemental analysis was carried out.

2.3. Mechanical Properties

The experimental density for various B4C reinforced nanocomposites was estimated
through the Archimedes method. It involves the weight of samples in the air as well
as water.

ρ =
Wa

Wa−Ww
(1)

where Wa and WW correspond to the weight of sample in air and water, respectively.
Porosity plays a crucial role in the mechanical behavior of any material; in general, the

porosity values will be the norm for the liquid metal process but when the reinforcement
material is added to the liquid, the atmospheric air interacts with the ceramic particles and
tends to increase the porosity.

porosity =
ρth − ρex

ρth
(2)

where ρth is the theoretical density and ρex is the experimental density. The ρth value can be
estimated by the rule of mixing equation, as given below:

ρth = ρmVm + ρrVr (3)

where ρm is the matrix density, Vm is the matrix volume fraction. Similarly, ρr and Vr
correspond to the density and volume fraction of reinforcement (respectively).
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Vr =
Wrρm

ρr + Wr(ρm − ρr)
(4)

Here, Wr is the weight percentage of ceramic particles.
Vickers microhardness tester (Model No.: Economet VH 1 MD, Chennai Metco Pvt.

Ltd., Chennai, India) was used to test the hardness of B4C-reinforced nanocomposites,
with a 200 g load and 15 s dwell time. Each test was repeated 8 times and the average
value was calculated for the best five readings. The tensile test was conducted as per
ASTM E8M small (size: 9 mm gauge diameter and 45 mm gauge length) using a universal
testing machine (Model No.: WDW-100S, Blue Star Engineering and Electronics Ltd.,
Mumbai, India). Each test was repeated 3 times and the mean value was calculated.

3. Results and Discussion
3.1. Microstructure Analysis

The yield strength of any material depends on the grain size and the strength
increases with respect to the size of grain refinement, as per the Hall–Petch theory.
Similarly, the toughness and ductility of a material are significantly affected by the
grain size. Throughout the AA7150-B4C nanocomposite liquid solidification process,
the B4C nanoparticles acted as the center of non-homogeneous nucleation as well as
reinforcement of matrix alloy grains. The grain refinement is an attractive mechanism as
compared to other strengthening mechanisms and is due to the retention of ductility as
well as toughness of the materials.

From Figure 3a–d, it is clear that the formation of grain boundaries increased and
grain refinement increased up to 1.5 wt.% with an increase of reinforcement content, and
then decreased due to low nanoparticle percolation threshold effect, which leads to a
high content of cluster/agglomeration particles along with the nanoparticles [16]. The
average grain size (AGS) of each nanocomposite was calculated through the “Linear
Intercept Method, AGS = Line of length/No. of grains crossing the line”. The length
of the line was measured with the help of ImageJ software [17]. The measured values
for the average grain size are represented in Figure 3e. Therefore, it was noticed that
the percentage of reduction of average grain size at AA7150-1.5% B4C was 34.68% as
compared to 0.5 wt.%. Hence, AA7150-B4C nanocomposite at 1.5 wt.% had higher
strength (180.9 MPa) compared to other weight percentages.
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Figure 4 shows the particle distribution of various weight percentages of nanocompos-
ites by means of SEM analysis and it was noticed that there was a homogeneous distribution
of B4C nanoparticles in the AA7150 matrix in accordance with the wt.% from 0.5, 1.0, 1.5,
to 2.0 wt.%. It was also observed that 1.5 wt.% of B4C represented more particles and
enjoyed better homogeneous distribution throughout the nanocomposite as compared to
other reinforcements. Figure 4d indicates that the number of voids and cluster formations
increased (due to low nanoparticle percolation threshold effect) and the porosity spread
around the material, which led to an enhancement in the grain sizes as well as a reduc-
tion in the strength of the nanocomposite material. In support of the above statement,
the nanoparticles distribution was analyzed through ImageJ software and the number of
particles and cluster sizes was observed. From the histogram investigation, the particle
size distribution supported the uniform distribution. Figure 4c shows that the higher the
number of nano-particulates with uniform distribution, the lower the number of clusters of
AA715-1.5 wt.% B4C composite.

Figure 5 shows the elemental analysis (SEM and EDS) of monolithic and optimal
weight percentage of (1.5% B4C) nanocomposite. It was confirmed with major elements in
the monolithic material (pure AA7150), like Al, Cu, Mg, and Zn, and the nanocomposite
of AA7150-1.5% B4C, like Al, Cu, Zn, and Mg, along with reinforced elements, such as
B, C. This information supports the idea that the reinforcing of B4C nanoparticles into
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the matrix of AA7150 was successful, and the same conclusion was also verified with
XRD analysis.
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matrix of AA7150 was successful, and the same conclusion was also verified with XRD 
analysis. 

Figure 4. SEM for nanoparticle distribution in the AA7150 matrix with (a) 0.5% B4C, (b) 1.0% B4C,
(c) 1.5% B4C, and (d) 2.0% B4C.

3.2. Physical and Mechanical Properties

The theoretical and experimental density of AA7150-B4C nanocomposites and alloy
matrix material was measured by the rule of mixing (Equation (3)) and Archimedes law
(Equation (1)), respectively. The porosity involved in AA7150-B4C nanocomposites and
base material was measured by using the porosity equation (Equation (2)), which is based
on theoretical and experimental density values.
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According to the results obtained, the graphical representation of experimental density
and percentage of porosity against wt.% of B4C nanoparticles is shown in Figure 6a,b
(respectively). From the results, it was noticed that the experimental density of AA7150-
B4C nanocomposite decreased with the increase of B4C nanoparticle content due to lower
density of B4C (2.52 g/cc) particles and the effect of ultrasonic degassing phenomena, which
play a vital role in minimizing the porosity. This outcome occurred due to the cavitation
effect and closely packed dispersion of B4C ceramic nanoparticles due to an acoustic
streaming effect [18]. In addition, the existence of porosity in AA7150-B4C nanocomposites
and monolithic material was attributed to the theoretical and experimental deference. From
the porosity results, it was noticed that the percentage of porosity decreased with an increase
of ceramic B4C nanoparticle content up to 1.5 wt.% and the maximum reduction at 1.5 wt.%
of B4C was due to the degassing effect of ultrasonication and the homogeneous distribution
of B4C nanoparticles throughout the composites as compared to the counterparts [19].
Further, the reinforcement of B4C nanoparticle content into the AA7150 matrix led to an
enhancement in the percentage of porosity and this was due to the large surface area to
volume ratio of ceramic nanoparticles, voids, and the cluster formation [20].
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Figure 7 shows the results of the Vickers hardness test for various nanocomposites
of AA7150-B4C, where the microhardness behavior is represented through a bar graph.
From the graph, it can be seen that the microhardness of B4C nanoparticle-reinforced
AA7150 matrices increased positively with increased B4C nanoparticle weight percentage
up to 1.5% due to harder B4C ceramic particles, which strengthened the composite mate-
rial [21,22]. This kind of observation can also be linked to a better interaction between the
AA7150 matrix and the reinforced B4C nanoparticles, Hall–Petch (grain refinement), and
Orowan strengthening mechanism (uniform distribution of ceramic nanoparticles due to
ultrasonication effect), which restricted the deformation during the indentation [23].
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Similarly, Figure 8a shows the tensile properties of the base AA7150 compared with
that of AA7150-B4C nanoparticles (with different wt.%) at room temperature and the cor-
responding stress–strain curves are shown in Figure 8b. The effect of B4C reinforcement
in AA7150 nanocomposites was analyzed for the tensile values and it was observed that
the ultimate strength increased positively with B4C nanoparticles up to 1.5 wt.% due to
the nanoparticle load-bearing effect, as well as the coefficient of thermal expansion (CTE)
mismatch strengthening mechanism. The CTE variation of AA7150 (23.2 × 10−6/◦C) and
B4C nanoparticles (5 × 10−6/◦C) influenced the results due to thermally developed residual
stress and high dislocation density, which acts as a barrier to the movement of dislocation
in the nanocomposite material [24]. This result can also be rightly attributed to the homo-
geneous distribution of ultra-fine B4C ceramic particles in the nanocomposites and to the
ultrasonic probe-assisted vibration in the aluminum melt bath, leading to the homogeneous
distribution of nanoparticles and grain refinement during the solidification process. This
phenomenon promotes the enhancement of tensile strength in the nanocomposite mate-
rial as compared to the pure alloy matrix [25]. Hence, the AA7150-B4C nanocomposite
strength increased with B4C nanoparticle content up to 1.5 wt.% (the values of ultimate
tensile strength for base metal and 1.5 wt.% of B4C nanoparticle-reinforced nanocomposites
were 114.7 MPa and 180.9 MPa) and then decreased further. This decrement of ultimate
strength in AA7150-2 wt.% B4C was mainly due to clusters/agglomerations and microvoids,
which promote the stress concentration in the nanocomposites [26]. In addition, the micro-
hardness and ultimate tensile strength significantly improved by 154.5–192.4 HV (57.7%)
and 114.7–180.9 MPa (24.5%) and were found to have optimal properties at 1.5%B4C.

3.3. Fracture Surface

Tensile fracture surface fractographic images at 100× magnification for the base metal
and different weight percentages of B4C reinforcement are shown in Figure 9. Figure 9a–e
reveals that the number of cracks, voids, and grape-shaped dendrites globules acted as a
stress riser and led to a crack [27]. These moderately increased with an increased weight
percentage of reinforcement particle content. Figure 9d confirms that the voids and cracks
were minimized as compared to other weight percentages. Further increment in weight
percentages led to an increase in huge voids and cracks of various shapes and sizes,
as confirmed by Figure 9e. It also confirmed that the facets and dimples were present.
Therefore, the nature of the failure of AA7150-B4C is a mixed kind of partially brittle and
ductile mode [28].
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(e) 2.0% B4C-reinforced AA7150 matrices.

The optimal weight percentage fractography was enlarged for the fracture surface
analysis and it is represented in Figure 10, showing the enlarged image of 1.5% B4C
nanocomposite at 20 µm from a 200 µm fractography. The enlarged photography shows
many stepwise dendrites and facets. At the same time, it is also revealing that the B4C
strength of the next crystal layer, which elevated the high surface energy and friction
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between adjacent interfaces, required detaching the particles. Therefore, it led to the
optimal strength of nanocomposites.
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4. Conclusions

In the present study, the AA7150-B4C nanocomposites were successfully manufac-
tured through an ultrasonic vibration-assisted double stir casting process using the vortex
method. The experiments were conducted in the as-cast condition. On testing of the
composite, the mechanical properties were found to be increased with an increase of B4C
particle reinforcement of up to 1.5% wt. and further increments led to a reduction in prop-
erties due to the presence of voids and clusters. In addition, the microstructure analysis
confirmed the ultrasonic vibration formation of good grain boundaries, grain refinement,
and uniform distribution of nanoparticulates at 1.5% B4C as compared to other percent-
ages. The measurement of porosity indicated that the porosity values decreased with an
increase of B4C nanoparticle content and we observed a minimum of 1.5% B4C (0.11%).
The micro-hardness and ultimate tensile strength significantly improved by 154.5–192.4 HV
(57.7%) and 114.7–180.9 MPa (24.5%) and were found to have optimal properties at 1.5%
B4C. The fine ductility of AA7150-B4C was maintained without compromising its strength
and a maximum ductility of 16.27% was reported at an optimal weight percentage of B4C.
The fractographic studies revealed the brittle nature of failure in nanocomposites.
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