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Abstract: Phosphate cement-based materials are fast-hardening cement materials, which have been
applied to the rapid repair of concrete structures. However, the excessive setting rate could lead
to initial cracks in the cement-based matrix. Therefore, a proper retarder is required to reduce the
setting rate, thus improving the strength of structures. In this study, a magnesium chloride retarder
was selected, and its influence on the setting time, slump flow, and the mechanical strengths (flexural
strength, compressive strength, and bond strength) of phosphate cement paste curing for 3 h~28 d
was investigated. Scanning electron microscopy, X-ray diffraction, and thermal analysis were used
to analyze the mechanism of the properties of phosphate cement paste. Results showed that the
setting time increased exponentially with the mass ratio of magnesium chloride by the total mass
of magnesium oxide. Meanwhile, the slump flow increased linearly with the increasing dosage of
magnesium chloride, and the drying shrinkage rate exhibited a quadratic function with the curing age.
The addition of magnesium chloride decreased the mechanical strengths of phosphate cement paste at
earlier curing age (lower than 3 d) and effectively improved the mechanical strengths at a later curing
age (equal to or higher than 3 d). Moreover, magnesium chloride could also decrease the drying
shrinkage rate. It can be obtained from the microcosmic researching results that magnesium chloride
can inhibit the hydration of phosphate cement and reduce cracks induced by drying shrinkage at
later curing age (higher than 3 d).

Keywords: phosphate cement; magnesium chloride; setting time; mechanical strengths; scanning
electron microscope; X-ray diffraction; thermal analysis

1. Introduction

In recent years, the damage of cement concrete building structures is frequently
reported. For some critical structures, such as bridges and roads, it is always needed to
recover their function.

For timely operation and use [1], the materials mainly used to repair bridge decks
include early strength Portland cement concrete, fast hardening sulfate cement repair
materials, emulsified asphalt concrete, polymer-modified cement or polymer cemented
repair materials, etc. [2–5]. However, using Portland cement as a repair material has the
drawbacks of low early strength, high maintenance requirements, volume stability, and
poor bonding [6,7]. Fast-hardening sulfate cement, which can develop its strength in a
short time, has been broadly used as a repair material for road repair. Research has shown
that it can be opened to traffic after paving within 6 h [8]. Besides, it also offers high early
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strength, strong frost resistance, good impermeability, and corrosion resistance. However,
this repair material is prone to micro expansion in humid environments. This material
may generate large hydration heat and thermal cracks in the early curing stage during
hydration [9,10]. Since cracks exist, the inner reinforcement is prone to corrosion, which
may cause its strength reduction at a later stage [11]. Therefore, fast-hardening cement with
better performance is needed as a substitute.

Magnesium phosphate cement repairing material was manufactured by mixing the
neutralization of over-burned magnesium oxide and phosphate with acid and alkali at
room temperature [12,13]. This type of cement was first invented by Brookhaven National
Laboratory and Argonne National Laboratory in the United States [14,15]. The mechanical
properties, the microscopic properties, and the durability of magnesium phosphate cement-
based materials have been reported by several scholars [16–18]. Prior research pointed
out that magnesium phosphate cement repair material has the advantages of rapid setting
and hardening, high strength, low shrinkage cracking, and wear resistance. However, its
setting and hardening speeds are difficult to control, hindering its large-scale production
and application [19,20]. Therefore, the application of retarder in magnesium phosphate
cement is very important.

Retarders, such as borax, boric acid, triethanolamine, are commonly used in phosphate
cement. It has been proven that borax and boric acid can delay the setting of cement,
reduce the hydration heat, and prevent early cracking [21,22]. Moreover, the addition of
borax and boric acid can improve the mechanical strength at a later curing age [23,24].
However, the retarding efficiencies of borax and boric acid are low. A large amount of
borax and boric acid needs to be added to the cement to achieve an effective retarding effect,
which may further significantly increase the manufacturing cost of magnesium phosphate
cement-based materials. The triethanolamine possessed an excellent retarding effect [25].
Nevertheless, this kind of retarder may reduce the mechanical strength. To this end, a
newly developed retarder was proposed.

In this study, a kind of self-developed retarder (magnesium chloride mixed with fixed
content of borax) was applied in the magnesium phosphate cement paste. The setting time
and the mechanical strengths (flexural strength, compressive strength and bond strength)
were investigated. Thermogravimetric analysis, X-ray diffraction, and scanning electron
microscopy were carried out for investigating the hydration mechanism. This research will
promote the application of magnesium phosphate cement in the future.

2. Experimental Section
2.1. Raw Materials

The grinded magnesium oxide produced by Hebei Gaolin Magnesium Salt Chem-
ical Co., Ltd., Gancang, China, was used for the preparation of magnesium phosphate
cement. The specific surface area, density, average diameter, melting point, and boiling
point of grinded magnesium oxide are 395 m2/kg, 3.17 g/cm3, 67.16 µm, 2852 ◦C, and
3600 ◦C, respectively. The potassium dihydrogen phosphate applied in this research was
manufactured by Guangdong Xilong Chemical Co., Guangzhou, China. The borax, with an
average diameter of 53.12 µm, was provided by Dashiqiao Yongtai borax factory, Dashiqiao,
China. The purities of magnesium oxide, potassium dihydrogen phosphate, and borax
were 91.47%, 98.1%, and 98.5%, respectively. Table 1 shows the main chemical composition
of magnesium oxide powder.

Table 1. Main chemical composition of magnesium oxide powder.

Oxide MgO SiO2 Al2O3 CaO FexOy TiO2 Loss on Ignition

Content/% 91.47 3.27 1.13 1.98 1.17 0.03 0.95
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2.2. Specimen Preparation

The specimens were manufactured according to the mixing proportion of Table 2
following these steps.

Table 2. Mix proportions of magnesium phosphate cement paste/g.

Types MgO Borax K2HPO4 MgCl2 Water Water-Reducer

MgCl2-0 100 2.5 2 0 15.7 0.31
MgCl2-1 100 2.5 2 1.0 15.8 0.32
MgCl2-2 100 2.5 2 2.0 16 0.32
MgCl2-3 100 2.5 2 3.0 16.1 0.32
MgCl2-4 100 2.5 2 4.0 16.3 0.33

The MgO, borax, and MgCl2 were mixed using a Type JJ-5 cement mixer for 1 min
with a stirring speed of 140 ± 5 r/min. After that, water, K2HPO4, and water-reducing
agent were added to the cement mixer and stirred for another 3 min with a stirring speed
of 285 ± 10 r/min. Finally, all fresh RPC was poured into a mold to fabricate the specimens
with a size of 40 mm × 40 mm× 160 mm.

2.3. Measurement Methods
2.3.1. The Setting Time Experiment

A circular truncated cone with 60 mm top diameter, 70 mm bottom diameter, and
40 mm height was used to measure the setting time for phosphate cement paste. Cement
standard consistency setting time tester (standard favicat tester) cement Vicat was produced
by Beijing zhongkejianyi Electronic Technology Co., Ltd., Beijing, China was used to
measure the setting time. This experiment was carried out according to GBT1346-2011 [26].

2.3.2. The Experiments of Mechanical Performance

The compressive and flexural strengths of specimens were tested by the YAW-300
microcomputer-controlled full-automatic universal testing machine (Jinan Ruipu Elec-
tromechanical Technology Co., Ltd., Jinan, China). The loading speeds of 2.4 kN/s and
0.05 kN/s were selected for determining the compressive and flexural strengths, respec-
tively. The specific test process was conducted according to GB/T 17671-1999 Chinese
standard [27]. Figure 1 shows the measurement of flexural and compressive strengths of
phosphate cement-based materials.
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Figure 1. The flexural and compressive strengths of phosphate cement-based materials.

The bond strength of phosphate cement-based materials can be obtained by the
following method. The specimens of ordinary Portland cement paste with the water-
cement ratio of 0.15% and 0.3% water-reducing agent by cement mass were prepared. The
specimens were cured in an environment of 50% relative humidity and temperature of
20 ◦C for two days and then demolded. The demolded specimens were moved to the
standard curing room and cured for 26 days. After curing, all specimens were cut in two
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halves, and each half of the specimens was repaired by phosphate cement paste. After
hardening, the specimens were cured in the standard environment for 3 h, 1 d, 3 d and 28 d.
Finally, the flexural strength of the repaired specimens was determined according to GB/T 17671-
1999 Chinese standard. The corresponding flexural strength was the bond strength of phosphate
cement paste. Figure 2 illustrates the specimen for the measurement of bond strength.
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The drying shrinkage rate was determined by a Swiss SYLVAC high precision digital
display 805-8501 ten-thousandth meter provided by Swiss Danqing Technology Co., Ltd.,
Beijing, China. The Swiss SYLVAC high precision digital display 805-8501 ten-thousandth
meter was installed at the axial position of the specimen. The drying shrinkage rate was
measured by following these steps.

The specimen’s initial length (L0) was tested after the sample’s initial hardening. Then,
the value of the length (Lt) of the specimen was read out during the curing time. The drying
shrinkage rate (Sd) of concrete can be calculated by Equation (1), and Figure 3 shows the
measurement of drying shrinkage rate.

Sd =
Lt − L0

L0
(1)
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2.3.3. Experiments of Thermal Analysis and SEM

The following process was carried out for thermal analysis, SEM, and research experiments.
The samples were cured in the standard curing environment for 3 h, 1 day, 3 days,

and 28 days. After curing, all samples were immersed in absolute ethanol for 4 days to
prevent the hydration of cement. Then, the vacuum drying oven produced by Beijing
zhongkejianyi Electronic Technology Co., Ltd., Beijing, China, was used to dry the samples
at 60 ◦C for 4 days. A soybean-sized sample of hardened cement paste was taken from the
inner portion of specimens for the following measurements.

The samples were filtrated with a 74 µm sieve in the thermogravimetric test. Mean-
while, some soybean-sized hardened samples coated by gold film were used for measure-
ment via scanning electron microscope (SEM). Nitrogen with a 20 mL/min flow rate was
provided as shielding gas. The temperature in the thermogravimetric analyzer ranged from
20 ◦C to 950 ◦C. Weighed sample powder was placed in an alumina pan of the confined
space of a thermogravimetric analyzer. The experimental process for the thermal analysis
curves was referenced from [28–30]. A TGA 4000 thermogravimetric analyzer provided
by Perkin Elmer Instrument Co., Ltd., New York, NY, USA and a JSM-6360LV scanning
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electron microscope (Japan electron optics laboratory, Tokyo, Japan) were applied in the
measurement of SEM images and thermal analysis curves, respectively. The ground powder
of specimen was moved to the D8 ADVANCE X-ray diffractometer (Bruker Corp., Tokyo,
Japan) for the measurement of the XRD.

3. Results and Discussion
3.1. The Working Performance

The setting time is the one of the main parameters that affects the performance of
phosphate cement. Figure 4 shows the initial and final setting time of phosphate cement
paste. It can be found from Figure 4 that the initial setting time increased (the increasing
rate is 85.2%) with the dosage of magnesium chloride increasing from 0% to 1%. A dramatic
increase in the initial setting time was observed with the further addition of dosage from
1% to 2% (the increasing rate was 196.5%). However, with further increases in dosage, this
increasing rate decreased. Increasing rates to the initial setting were found for the dosage
from 2% to 3% and 3% to 4%. This indicates that the initial setting time increased rapidly
with the dosages of magnesium chloride increasing from 0% to 2%. However, the increasing
rate of the initial setting time decreased for the dosage from 2% to 4%. Similar results have
been found for the final setting time of phosphate cement paste. Moreover, the gap between
the initial and final setting time was small at an MgCl content of less than 2%, which
could be attributed to the fact that the addition of MgCl could significantly change the pH
value of phosphate cement paste. It could inhibit phosphate particles’ dissolution and thus
retard the early hydration reaction speed of phosphate cement paste. However, when the
content of MgCl was less than 2%, the retarding effect of MgCl was insignificant [31,32].
Furthermore, the magnesium chloride can provide magnesium ions. Therefore, with the
increase of magnesium chloride, the magnesium ion will increase as well, thus inhibiting
the hydration reaction of phosphate cement [33]. At a 2% dosage of magnesium chloride,
the optimal retarding efficiency was reached. At this dosage, phosphate cement’s initial
and final setting times were 33.5 ± 0.018 min and 56.8 ± 0.016 min, respectively, which is
suitable for construction. As obtained from Figure 4, the error bar value was lower than
0.03, indicating the accuracy of experimental data.
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Figure 4. The setting time of cement paste.

The fluidity of phosphate cement paste is the main factor affecting the pouring of fresh
phosphate cement paste. Figure 5 shows the slump flow of fresh phosphate cement paste.
As illustrated in Figure 5, the slump flow of fresh phosphate cement paste increased in the
form of a linear function with the increasing dosage of magnesium chloride. This could be
attributed to the fact that the addition of magnesium chloride could delay hydration and
condensation of phosphate cement paste, thus decreasing the rate of free water consumption



Coatings 2022, 12, 370 6 of 14

due to the hydration [18,34]. The relative squared error (R2) of the fitting function in Figure 5
is 0.96, indicating the rationality and accuracy of the fitting result.
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Figure 5. The slump flow of cement paste.

3.2. The Mechanical Performance

As a kind of fast hardening and early strength cement, the phosphate cement paste is
prone to cracking due to the huge hydration heat. Figure 6 shows the drying shrinkage rate
of specimens, which can be applied to evaluate the crack performance. The corresponding
fitting results are illustrated in Table 3. As depicted in Figure 6, the drying shrinkage
rate of specimens increased obviously, with the curing age increasing from 0 h to 28 d
due to the large amount of hydration heat produced by early hydration of phosphate
cement [35,36]. Meanwhile, when the curing age increased from 28 d to 90 d, the drying
shrinkage rate reached the peaks and decreased slightly. This could be attributed to the
practically completed hydration of phosphate cement at a curing age of 28 d [37]. Moreover,
it can be found in Figure 6, the addition of magnesium chloride can result in the reduction of
drying shrinkage rate due to the effect of delaying phosphate cement setting and hydration.
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Figure 6. The drying shrinkage rate of specimens.

Table 3. The fitting results of drying shrinkage rate and the curing age (T).

Equation MgCl
Content/% a b c R2

Sd = aT2 + bT + c

0 −3.56 × 10−8 1.64 × 10−4 0.057 0.83
1 −2.70 × 10−8 1.28 × 10−4 0.054 0.80
2 −3.32 × 10−8 1.26 × 10−4 0.030 0.81
3 −2.85 × 10−8 1.10 × 10−4 0.026 0.80
4 −1.95 × 10−8 8.37 × 10−5 0.023 0.81

Figure 7 shows the mechanical strengths including flexural strength, compressive
strength and bond strength of phosphate cement paste. The corresponding increasing
rates of mechanical strengths are shown in Figure 7b,d,f respectively. It can be found in
Figure 7, the mechanical strengths increased with increasing curing age. When the curing
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age was lower than 3 d, the mechanical strengths decreased with the growing dosage
of magnesium chloride. However, when the curing age reached 3 d or is higher than
3 d, the addition of magnesium chloride increased the mechanical strengths of phosphate
cement paste. All specimens’ flexural strength, compressive strength, and bond strength
were 2.9 MPa~13.5 MPa, 22.3 MPa~68.6 MPa, and 1.8 MPa~7.56 MPa, confirming that
the phosphate cement with retarder possessed high early mechanical strength and bond
strength. It can be found from Figure 7 that magnesium chloride can reduce the mechanical
strengths of phosphate cement paste at a curing age lower than or equal to 1 d and improve
the mechanical strengths at a curing age longer than 3 d. Finally, the error bar values were
lower than 0.0071, confirming the precision of the experimental results.
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Figure 7. The mechanical strengths and the corresponding increasing rate of cement paste at different
curing age. (a) Flexural strength, (b) The increasing rate of flexural strength by MgCl, (c) Compressive
strength, (d) The increasing rate of flexural strength by MgCl, (e) Bond strength, (f) The increasing
rate of flexural strength by MgCl.
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3.3. Microscopic Analysis

In this study, the specimens with 1%, 2%, and 4% were used for microscopic research.
Figure 8 shows the thermogravimetric (TG) analysis and differential thermal analysis (DTA)
which were applied in characterizing the hydration process of phosphate cement. The
testing temperature of the thermal experiment ranged from 20 ◦C to 950 ◦C.
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Figure 9 shows the X-ray diffraction spectrums of specimens. It can be observed that 

magnesium oxide (MgO), potassium magnesium phosphate (MKP), and potassium di-

hydrogen phosphate (KH2PO4) existed in the specimens. As depicted in Figure 9, dif-

fraction peaks of the magnesium oxide and potassium dihydrogen phosphate decreased 

with the increasing curing ages due to the fact that the hydration degree of MgO and 

KH2PO4 was improved by the increasing curing age. Moreover, the addition of magne-

sium chloride increased the diffraction peaks of the magnesium oxide. The research re-

sults can explain the hydration promotion of the increased curing age and the retarding 

effect of magnesium chloride. 

Figure 8. Thermogravimetric analysis curves of specimens. (a) TG curves of specimens with 0%
MgCl, (b) DTA curves of specimens with 0% MgCl, (c) TG curves of specimens with 2% MgCl,
(d) DTA curves of specimens with 2% MgCl, (e) TG curves of specimens with 4% MgCl, (f) DTA
curves of specimens with 4% MgCl.

Figure 8a,c,e demonstrate the TG analysis, which can reflect the weight loss of hydra-
tion product under increasing temperature. Additionally, the DTA curves are illustrated in
Figure 8b,d,f, which present the peak positions of temperatures. It can be observed from
Figure 8 that the TG decreased rapidly as the temperature increased from 20 ◦C to 424 ◦C.
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However, when the temperature ranged from 424 ◦C to 950 ◦C, the TG varied stably with
the increasing temperature. The variation of TG and DTA curves can be described as three
steps. In the first phase (20 ◦C~150 ◦C), the first mutations of TG and DTA occurred, due to
the evaporation of free water. Moreover, when the temperature increased to 424 ◦C, the
second mutations of TG and DTA happened due to the early hydration of magnesium phos-
phate cement (the decomposition of hydrated potassium magnesium phosphate formed
by the hydration of magnesium oxide and potassium hydrogen phosphate, in this step
some water of crystallization decomposed) [38–41]. The third mutation was at 918 ◦C, due
to the further decomposition of hydrated potassium magnesium phosphate (in this step,
more water of crystallization decomposed). Moreover, the addition of magnesium chloride
decreased the TG and DTA when the temperature was 424 ◦C, due to the retarding effect of
phosphate cement paste. Furthermore, the magnesium chloride led to increasing the TG
and DTA, especially when the temperature was 918 ◦C. Therefore, the magnesium chloride
improved the performance of magnesium phosphate cement paste when the curing age
was equal to or higher than 1 d.

Figure 9 shows the X-ray diffraction spectrums of specimens. It can be observed
that magnesium oxide (MgO), potassium magnesium phosphate (MKP), and potassium
dihydrogen phosphate (KH2PO4) existed in the specimens. As depicted in Figure 9, diffrac-
tion peaks of the magnesium oxide and potassium dihydrogen phosphate decreased with the
increasing curing ages due to the fact that the hydration degree of MgO and KH2PO4 was
improved by the increasing curing age. Moreover, the addition of magnesium chloride increased
the diffraction peaks of the magnesium oxide. The research results can explain the hydration
promotion of the increased curing age and the retarding effect of magnesium chloride.
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Figure 9. X-ray diffraction patterns of specimens. (a) Specimens with 0% MgCl, (b) Specimens with
2% MgCl, (c) Specimens with 4% MgCl.

Figure 10 shows the scanning electron microscope (SEM) results of specimens. The
energy dispersive spectrometer (EDS) is illustrated in Figure 11. Specimen with 4% MgCl
and cured for 28 days was selected for the investigation of EDS. Table 4 is the element
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distribution obtained by EDS. As observed from Figures 10 and 11, rhombic crystal prod-
ucts, which are the early hydration products, can be found in Figure 10. Moreover, with
the addition of magnesium chloride, the rhombic crystal products decreased, and the
magnesium chloride crystals increased. The increasing curing age improved the density of
microstructure and reduced the rhombic crystal products. Moreover, some cracks can be
found in the SEM images due to the hydration heat and shrinkage. Furthermore, the addi-
tion of magnesium chloride could reduce crack width and the number of inner specimens.
It could be summarized from the SEM results that the magnesium chloride could inhibit
hydration of magnesium phosphate cement when the curing age was 3 h. Additionally,
the inner cracks of magnesium phosphate cement paste were decreased by adding the
magnesium chloride.
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Figure 10. SEM micrographs of specimens. (a) Cured for 3 h-0% MgCl, (b) Cured for 1d-0% MgCl, 

(c) Cured for 3 d-0% MgCl, (d) Cured for 28 d-0% MgCl, (e) Cured for 3 h-2% MgCl, (f) Cured for 1 
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Cured for 1 d-4% MgCl, (k) Cured for 3 d-4% MgCl, (l) Cured for 28 d-4% MgCl. 

Figure 10. SEM micrographs of specimens. (a) Cured for 3 h-0% MgCl, (b) Cured for 1d-0% MgCl,
(c) Cured for 3 d-0% MgCl, (d) Cured for 28 d-0% MgCl, (e) Cured for 3 h-2% MgCl, (f) Cured for
1 d-2% MgCl, (g) Cured for 3 d-2% MgCl, (h) Cured for 28 d-2% MgCl, (i) Cured for 3 h-4% MgCl,
(j) Cured for 1 d-4% MgCl, (k) Cured for 3 d-4% MgCl, (l) Cured for 28 d-4% MgCl.
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Table 4. The element distribution obtained by EDS.

Sample C O Na Mg P Cl K Ca

With 4% MgCl 8.29 27.48 3.59 8.66 8.32 18.26 22.14 3.26

4. Conclusions

In this study, the influence of magnesium chloride on the working performance and
the mechanical properties of phosphate cement paste was investigated. The microscopic
analysis was carried out to investigate the mechanism of the macroscopic properties. The
conclusions can be drawn as follows:

The addition of magnesium chloride increased the setting time and the slump flow
of phosphate cement paste. The optimal content of 2% magnesium chloride by the mass
ratio of magnesium oxide showed the most effective retarding efficiency for phosphate
cement paste. The initial and final setting times of 33.5 ± 0.018 min and 56.8 ± 0.016 min
were observed, respectively. The relationship between the slump flow and the magnesium
chloride content obeyed the positively correlated linear function.

The evaluation function for the drying shrinkage rate and the curing age could be
expressed as a quadratic function. The addition of magnesium chloride negatively affected
the mechanical strengths of phosphate cement pastes at a curing age lower than or equal
to 3 d. Meanwhile, when the curing age was longer than 3 d, the addition of magnesium
chloride improved the mechanical strengths of phosphate cement paste. Additionally,
magnesium chloride decreased the drying shrinkage rate of phosphate cement paste.

The TG test showed that the free water in phosphate cement paste evaporated within
temperatures from 20 ◦C to 150 ◦C. The decomposition of hydrated potassium magnesium
concentrated on two temperature ranges: 150 ◦C~424 ◦C and 424 ◦C~918 ◦C. The magne-
sium chloride inhibited the hydration of phosphate cement and reduced cracks induced
by drying shrinkage at a later curing age (higher than 3 d). The retarder composed of
magnesium chloride and borax showed a positive effect on retarding phosphate cement
setting and improved its properties at a curing age longer than 3 d.
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