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Abstract: Composite fibers are composed of two or more different components by functionating,
coating or direct spinning, enabling unique characteristics, such as design ability, high strength, and
high- and low-temperature resistance. Due to their ability to be directly woven into or stitched onto
textiles to prepare flexible electronic devices, stretchable composite fibers have drawn great attention,
enabling better wearability and integrality to wearable devices. Fiber or fiber-based electronic film
or textiles represent a significant component in wearable technology, providing the possibility for
portable and wearable electronics in the future. Herein, we introduce the composite fiber together
with its preparation and devices. With the advancement of preparation technology, the as-prepared
composite fibers exhibit good performance in various applications closely related to human life.
Moreover, a simple discussion will be provided based on recent basic and advanced progress on
composite fibers used in various devices.

Keywords: fiber; composite; preparation; application

1. Introduction

Fibers are an indispensable part of people’s lives, and ordinary fibers can no longer
meet the development of social technology [1–3]. Therefore, composite fibers are gradually
assuming an essential role as an alternative and improved option. Composite fibers are
composed of two or more different components, and advanced preparation technology has
allowed optimization of the various properties [4–8]. The interaction of each component
provides it with excellent comprehensive properties, which enables good performance
in various applications closely related to human life [9–11]. The developed composite
fiber has been applied in the field of environment, energy and devices owing to several
advantages when compared with ordinary fiber: (1) Composite fibers have a higher specific
strength and electron transmission along with the fiber [12]. Such composite fibers possess
excellent wearability and are widely used to design wearable electronic devices [13,14].
(2) Composite fibers are related to the components’ various unique properties and ap-
plications, such as in energy devices, microelectronics, optics, catalytic, sensors devices,
etc. [15,16]. (3) The composite fibers’ structure and properties can be designable [17,18]. The
designed composite fiber can meet various requirements by controlling the structures via
different preparation processes [19–21]. Due to its advantages, such as being lightweight,
long-lasting, flexible, and conformable, composite fibers are highly desirable for wearable
electronic devices [22].

The use of mature and affordable textile processing technologies has allowed the
manufacture of many fibrous structures to design intelligent wearable devices, such as
sensors, environmental and energy devices [23]. Herein, we introduce the basic preparation
methods of composite fibers, including surface coating and direct preparation, and their
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applications in sensors, environments, and energy will be described according to the
representative literature. A simple discussion will also be provided based on recent basic
and advanced progress in various applications of composite fibers. Lastly, the challenges
and opportunities of composite fibers are proposed at the end of the paper.

2. Preparation of Functional Composite Fiber

With advanced nanotechnology, it is possible to build electronic devices directly inside
single fibers’ or on their surfaces. Thus, the functional composite fibers can be obtained
either from the functionalization of the original fiber or direct preparation. Appropriate
preparation technology could meet the various requirements for various applications.

2.1. Functionalization of Fiber

To functionalize fibers and preserve fiber enhancement, it is feasible to coat a secondary
material to a functional group on the surface, which could improve their thermal, electrical
or mechanical properties. We briefly present the methods for fiber’s functionalization in
Figure 1, which will obtain the composite fiber through functionalizing the original fiber.
Carbonization is the thermal decomposition of pre-prepared fibers under high temper-
atures, which removes the unstable parts and gains high pure carbon-based composite
fiber to enhance the electroconductivity, chemical stability, and mechanical strength [24].
Hydroxylation is a chemical reaction where hydroxyl groups are coated on the fibers’
surface [25]. Surface hydroxyl groups play an important role in the catalytic process as
active centers. Vulcanization is often performed in a vulcanizing boiler at ≤180 ◦C by
heating fibers with sulfur [26]. Vulcanized fibers are a durable, hard, chemically pure
cellulose product without resin or bonding agents, enabling the fiber to exhibit more flexi-
bility, high tear strength, impact resistance, smooth and abrasion-resistant surface. Plasma
treatment and anodic oxidation can introduce more chemical bonds into or onto the fiber,
positively affecting the composite fiber’s interfacial strength [27]. Dipping, chemical vapor
deposition, spraying or sputtering are used to form new functional coatings on the fibers,
bringing unique properties [28–31]. It should be noted that Figure 1 could not cover all
methods for preparing composite fiber by functionalization, and there are some other
surface modification or fiber functionalization methods not listed here.

2.2. Direct Preparation of Composite Fibers

In some cases, the composite fiber can be obtained by direct preparation from the
solution using a template or direct spinning. As shown in Figure 2, the dispersion of
composite precursors was injected into a capillary tube directly in a template method. The
solvent was subsequently removed by thermal treatment and left a fiber product [32].

The spinning methods can normally be divided into melt spinning and solution spin-
ning. Melt spinning is an effective technique for manufacturing polymer fibers [33,34]. As
shown in Figure 2, the melted polymer was extruded through a spinneret. A monofilament
or multifilament yarn was obtained after solidification by cooling. It should be noted here
that other materials (such as chemicals or nanoparticles) could be melted into the melted
polymer for complex applications.

Solution spinning often includes wet spinning, dry spinning and electrospinning.
For dry spinning and wet spinning: A certain proportion of polymer is dissolved in
a certain solvent and obtains a specific viscosity for spinning. The spinning solution
can also be prepared by direct polymerization of a homogeneous solution. Then, the
spinning solution is extruded from a syringe with a spinneret into a warm air chamber
(dry spinning) or a coagulation bath (wet spinning), where the solvent evaporates, and the
fine filaments are obtained after solidifying [35,36]. For some polymers, it is ineffective to
extrude the spinning solution into the coagulation bath directly. Therefore, the schematic
diagram in Figure 2 shows that dry-jet wet spinning has been developed in that the
spinning solution was extruded through a spinneret on an air gap and then transferred
into a coagulation bath for solidification [37,38]. Electrospinning draws charged threads
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from polymer solutions/melts the fiber with an electric force, thus preparing large-scale
nanofibers directly and continuously [39,40]. The melted polymer or solution is extruded
through a spinneret under a high-voltage electric field. The fiber or fiber-based melt is
obtained after solidifying or coagulating. It should be noted that the electrospinning
process should be operated inside a closed chamber with an air environment to control
the temperature and relative humidity. Moreover, other materials (such as chemicals or
nanoparticles) could be mixed into the spinning solution to prepare composite fibers [41].
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Figure 1. Methods for fiber functionalization to prepare composite fibers.

The development of nanofiber technology allows the original fibers to form a core-shell
structure [42], such a structured fiber can control the thickness or structure of the core or
shell layer to control the material properties, controlling the optical, electrical, magnetic
and other properties of the obtained composite fiber. The core-shell fiber can be fabricated
easily using coaxial electrospinning or wet spinning technology [43–46]. In Figure 2, we
showed the model of coaxial electrospinning and wet spinning methods. The principle of
coaxial spinning is similar to that of ordinary spinning. The core and shell layer material
solutions are in different syringes and extruded through the composite spinneret. The shell
layer solution flows out from the annular gap between the inner and outer spinneret, and
the core solution flows out from the inner spinneret, retaining the coaxial and resulting in a
coaxial fiber.
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Figure 2. Methods for direct preparation of composite fibers.

3. Functionalized Composite Fiber-Based Devices

Composite fibers are composed of two or more different components, and advanced
preparation technology optimizes the interaction of components making excellent com-
prehensive properties, which enables good performances in various applications closely
related to human life. Thus, composite fibers have been used in many different applications,
such as sensors, photo/electrocatalytic devices and other energy devices. This section will
introduce the applications of composite fibers in different applications.

3.1. Sensing Devices

As shown in Figure 3, composite fibers have been applied in many sensors for different
purposes, such as sensing gas, pollutants, ultraviolet radiation, temperature, humidity,
pressure, and strain [47–52].

3.1.1. Gas Sensor

Similar to the classic film or bulk type gas sensors (Figure 3a), the fiber gas sensors
have shown outstanding sensitivity with reversibility and good long-term device stability.
Moreover, the as-fabricated fiber gas sensors exhibited excellent wearable functionality
with flexible fiber shapes allowing excellent washability and an outstanding mechanical
bending ability. For practical applications, optimization of the device structure, sensing ele-
ments, and surface coatings will further improve the sensing performance of the intelligent
wearable fiber or textile.
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Figure 3. The different kinds of sensors assembled by composite fiber: (a) Gas sensor, Reproduced
with permission from [47], Copyright 2019, American Chemical Society; (b) Pollutant sensor, Repro-
duced with permission from [48], Copyright 2019, American Chemical Society; (c) Ultraviolet sensor,
Reproduced with permission from [49], Copyright 2018, American Chemical Society; (d) Temperature
& Humidity sensor, Reproduced with permission from [50], Copyright 2018, MDPI; (e) Pressure
sensor, Reproduced with permission from [51], Copyright 2015, Wiley-VCH; (f) Strain sensors,
Reproduced with permission from [52], Copyright 2019, Royal Society of Chemistry.

3.1.2. Pollution Sensor

Environmental monitoring has efficiently dealt with environmental changes and de-
tected pollution in our surroundings, which is equally important as pollution removal [48].
It is a promising scheme to utilize fiber pollution sensors for environmental monitoring due
to advantages including a high transmission rate along with fiber axial, lightweight, small
size, and flexibility. As shown in Figure 3b, pollution content could be determined when
pollutants were injected into the sensor. The fiber pollution sensors with functionalized
coatings were explored to detect many different kinds of pollution, such as volatile organic
compounds (VOCs), heavy metal ions, persistent organic pollutants (POPs), antibiotic
pollutants, and other industrial pollutants.

3.1.3. Ultraviolet Sensor

The ultraviolet (UV) sensors are photosensors that use the photo responded material
as a sensing element. The photoresponses of two terminals of the composite fiber were
measured upon exposure to ultraviolet light, which could detect the intensity, wavelength,
portion and on/off cycles of the ultraviolet light based on sensor response. As shown in
Figure 3c, a fabric-compatible UV sensor using a cellulose-based thread coated with single-
wall carbon nanotube ink exhibit high UV sensing performance for wearable applications.
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The UV sensor based on composite fibers could be stitched onto clothes for practical
usability under direct sunlight, which shows potential as a wearable sensor compared to
conventional bulk detectors.

3.1.4. Temperature and Humidity Sensor

Temperature and humidity are indispensable parts of production and daily life. These
sensors (Figure 3d) were used to measure temperature or humidity changes in the ambient
air. Composite fiber temperature sensors could possess real-time temperature-sensing
capacities based on fiber interferometric or Bragg grating. In addition, an integrated smart
cloth could measure the body temperature and track large-scale movements of human
physiological signals. Humidity sensors typically convert these measurements into an
electronic signal, which could indicate the humidity of the environment. Furthermore,
composited fibers enhance the temperature and humidity sensors in various shapes and
functionalities for various applications.

3.1.5. Pressure Sensor

A pressure sensor could convert sensing pressure into an electric signal from variations
in the contact area between conductors upon compressive deformation depending on the
pressure applied [53]. As for the nanostructured pressure sensor shown in Figure 3e, the
structure changed with applied pressure resulting in the contact area changing, which
means the composite fiber should possess porous structure and flexibility. The fiber or
fiber-based textile pressure sensor allows smart clothes to use multifunctional non-contact
intelligent human-machine systems.

3.1.6. Strain Sensor

Conductive composite fibers with inherent stretchability could be integrated onto
human skin or cloth to detect strain in the desired direction as shown in Figure 3f. A fiber
strain sensor could also convert sensing strain into an electric signal from variations in
the connections among conductive fillers in the composite fiber in response to an applied
strain. The development of wearable strain sensors with high sensitivity, excellent stability
and an extensive workable strain range remains highly challenging.

3.2. Environmental Devices

This section mainly describes the composite fiber or fiber-based textile with catalytic
activity to solve environmental issues, as shown in Figure 4 [54–59]. As well known, fiber-
based textiles or fabrics could be designed for filtering/absorbing and self-cleaning with
their superhydrophobic surface and unique physical properties [60]. Moreover, the fiber-
based film or cloth could be used in smart device fabrication for cleaning air or organic
pollution degradation. For example, high-efficiency textiles/metal-organic framework
composites (MOFs@textiles) can be used as air filters as shown in Figure 4a and function
excellent in removing particulate matter (PM) [54]. As shown in Figure 4b, SiO2–TiO2
porous nanofibrous membranes (STPNMs) can simultaneously realize highly efficient
oil/water separation and the removal of heavy metal ions from wastewater, making them
ideal candidates for practical applications in industrial wastewater purification [55]. The
nanostructured photo/electrocatalyst functionalized composite fiber, fiber-based film, or
textile will possess catalytic activity. The photocatalytic devices could be used for pho-
tocatalytic self-cleaning to degrade organic pollutants into CO2 and H2O see Figure 4c.
The composite fibers with photo-sensitive inorganic nanoparticle coatings reflect the super
degradation of heavy metals, making it possible to be used in protective garments and
medical and military uniform systems [56]. In addition, the carbon fiber cloth (CFC),
coated with TiO2/Ag3PO4, has shown successful degradation capability of pollution as
present in Figure 4d in static and flowing wastewater [57]. As shown in Figure 4e, Sn
nanoparticles coated on carbon nanotubes (CNTs) in a hollow fiber promote high selective
CO production from electrochemical CO2 reduction [58]. A unique functional electrode
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comprised of hierarchal Ni–Mo–S nanosheets with abundantly exposed edges anchored
on conductive and flexible carbon fiber cloth, exhibited a sizeable cathodic current and
a low onset potential for hydrogen evolution reaction in a neutral electrolyte as shown
in Figure 4f, and the incorporation of Ni atoms in Mo–S created substantial defect sites
as well as modified the morphology of Ni-Mo-S network at the atomic scale, resulting
in an impressive enhancement in the catalytic activity [59]. Notably, such functionalized
composite fibers, fiber-based films, or textiles could be used for organic pollution removal,
CO2 reduction and H2 production, which opens a new avenue to realize the separation and
recovery of nanostructured photocatalysts from solutions in practical applications [61].
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Figure 4. Schematic illustration of the composite fibers used for photo/electrocatalysis to solve the
environmental issues. (a) Air Cleaning, Reproduced with permission from [54], Copyright 2019,
American Chemical Society; (b) Heavy metal ion removal, Reproduced with permission from [55],
Copyright 2019, American Chemical Society; (c) Self-cleaning, Reproduced with permission from [56],
Copyright 2019, Royal Society of Chemistry; (d) Organic pollutants removal, Reproduced with
permission from [57], Copyright 2020, Elsevier Inc.; (e) CO2 reduction, Reproduced with permission
from [58], Copyright 2020, American Chemical Society; (f) Clean energy production, Reproduced
with permission from [59], Copyright 2015, American Association for the Advancement of Science.

3.3. Energy Devices

Recently, there has been significant interest in designing wearable and stretchable
energy generation and storage devices utilizing composite fiber and fiber-based textiles as
shown in Figure 5 [62–65]. For example, aligned MWCNT/MnO2 composite fibers could
be used to produce excellent lithium-ion batteries and wire-shaped supercapacitors as
shown in Figure 5a [62]. A CNT-based rubber fiber and spring-like Ti wire as two elec-
trodes in flexible perovskite solar cells showed high photovoltaic performances as shown
in Figure 5b [63]. Assembled in fiber-shaped dye-sensitized solar cells (FDSSCs), in situ



Coatings 2022, 12, 473 8 of 12

grown highly crystalline metal (Co, Ni) selenium on metal (Co, Ni) fibers have exhibited
outstanding power conversion efficiency (Co–Co0.85Se 6.55% and Ni–Ni0.85Se 7.07%) and
efficient electrochemical catalytic activity [66]. As shown in Figure 5c, a highly stretchable,
fiber-convolving-fiber structured nanogenerator could produce a maximum short circuit
charge transfer (QSC) of 61 nC and a maximum VOC of 142.8 V per stretching cycle, show-
ing splendid stability and durability [64]. Similarly, based on buckled MnO2/oxidized
carbon nanotube (CNT) fiber electrodes, the stretchable fiber supercapacitor (SC) exhibited
specific volumetric capacitance up to 409.4 F cm−3 with outstanding stability and repeata-
bility(Figure 5d) [65]. In addition, coaxial fiber-like electrodes have been used for designing
solar cells, supercapacitors, triboelectric nanogenerators and lithium-ion batteries [67–70].
These successes demonstrate the full incorporation of wearable energy devices based on
functionalized fibers or fabrics. It is easy to scale up the fiber to meet the power, energy,
and flexibility requirements of energy devices, and one fiber will provide a fundamental
building block of large-scale devices.
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(b) Solar cell, Reproduced with permission from [63], Copyright 2015, Royal Society of Chemistry;
(c) Triboelectric generator, Reproduced with permission from [64], Copyright 2017, Wiley-VCH;
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4. Conclusions and Outlooks

As described in this mini-review, composite fibers with various functions and a
tunable structure could be obtained through controllable synthesis, fulfilling the various
requirements concerning environmental and energy applications. Moreover, to develop
high-performance fiber devices, numerous opportunities and challenges remain in the
following aspects:
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(1) For composite fiber preparation: Composite fibers remain a relatively expensive
material used in specific special applications. Developing low-cost fiber preparation
technology is significant for large-scale practical daily life applications.

(2) For the design of functional composite fibers: Flexibility of fiber-based devices is essen-
tial for improving their performance and exhibiting reliability and stability for target
applications. Novel composite fibers need to be designed to obtain high-performance,
multifunctional, and stable flexible devices to fulfill various requirements.

(3) For fiber-based devices: There are plentiful opportunities to diversify flexible devices
with reconfigurable sizes, shapes, and properties. Advanced preparation technologies,
structure and device designs, and device assembly methods need to be developed to
prepare more fantastic functional composite fibers to fulfill various requirements in
environmental and energy applications, such as different wearable sensors, pollution
removal, air and water filtration, lithium-ion batteries, wire-shaped supercapacitors,
self-powered devices and solar cells.
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