Investigating the Water Jet Erosion Performance of HVOF-Sprayed WC-10Co Coatings on 35CrMo Steel Utilizing Design of Experiments
Abstract
:1. Introduction
2. Experimental Work
2.1. Coatings’ Characterization
2.2. Water Jet Erosion Investigation
2.3. Formulating the Experimental Design Matrix to Conduct the Erosion Tests
3. Predictive Statistical Model for the Erosion Rate
Confirming the Adequacy of the Empirical Correlations Established
4. Results and Discussion
4.1. Influence of the Impact Angles on the Erosion Rate
4.2. Influence of the Water Jet Velocity on the Erosion Rate
4.3. Influence of the Standoff Distance on the Erosion Rate
4.4. Influence of Erodent Discharge on the Erosion Rate
5. AFM Analysis
6. Conclusions
- I.
- The erosion rate of HVOF-sprayed WC-10Co coatings on stainless steel was predicted using an empirical relationship that incorporated the angle of impingement, water jet velocity, standoff distance, and erodent discharge. At a 95% level of confidence, the established correlation can be utilized to estimate the rate of erosion of WC-10Co coatings on stainless steel;
- II.
- The HVOF-sprayed carbide-based coatings showed higher erosion resistance than the uncoated substrate. The coating demonstrated a compact, crack-free coating with uniform deposition characteristics that were almost equal to the original feedstock powder;
- III.
- Due to the specific mechanical properties of the WC ceramic and consequently high H/E ratio, such coatings are good candidates for protection against water jet erosion;
- IV.
- Among the four process factors studied, the angle of impingement ha the greatest influence on the water jet erosion rate, leading to the water jet velocity, standoff distance, and erodent discharge;
- V.
- At low impact angles (35°), the 35CrMo steel lost more material, and the brittle ceramic-based WC-10Co coatings dissolved at higher angles. The incorporation of the HVOF-sprayed WC-10Cocoating onto the stainless steel resulted in a 40% increase in the water jet erosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khurana, S. Engineering silting problems in hydropower plant. Int. J. Sci. Res. 2015, 4, 32–33. [Google Scholar]
- Roy, M. Surface Engineering for Enhanced Performance against Wear; Springer: Friesach, Austria, 2013. [Google Scholar]
- Luo, X.; Chidambaram-Seshadri, R.; Yang, G.J. Micro-nanostructured cermet coatings. Adv. Nano Mater. Coat. Therm. Spray Micro Nano Technol. 2019, 61–117. [Google Scholar] [CrossRef]
- Miyazaki, N. Solid particle erosion of composite materials: A critical review. J. Compos. Mater. 2016, 50, 3175–3217. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Uthayakumar, M.; Arumugaprabu, V.; Deepak Joel Johnson, R. Influence of Filler on Erosion Behavior of Polymer Compo-sites: A Comprehensive Review. J. Reinf. Plast. Compos. 2018, 37, 1011–1019. [Google Scholar] [CrossRef]
- Ramachandran, C.S.; Balasubramanian, V.; Ananthapadmanabhan, P.V. Erosion of atmospheric plasma sprayed rare earth oxide coatings under air suspended corundum particles. Ceram. Int. 2013, 39, 649–672. [Google Scholar] [CrossRef]
- Kailash, S.; Praveen, A.S.; Suresh, S.; Sarangan, J.; Murugan, N. Comparison of Microstructural Characteristics of Plasma and HVOF Sprayed Ni-Cr/WC Coating. Int. J. ChemTech Res. 2014, 6, 3346–3348. [Google Scholar]
- Wang, Q.; Zhang, Y.; Ding, X.; Wang, S.; Ramachandran, C.S. Effect of WC Grain Size and Abrasive Type on the Wear Performance of HVOF-Sprayed WC-20Cr3C2-7Ni Coatings. Coatings 2020, 10, 660. [Google Scholar] [CrossRef]
- Liu, A.; Guo, M.; Gao, J.; Zhao, M. Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Surf. Coat. Technol. 2006, 201, 2696–2700. [Google Scholar] [CrossRef]
- Ramachandran, C.S.; Balasubramanian, V.; Ananthapadmanabhan, P.V.; Viswabaskaran, V. Understanding the dry sliding wear behaviour of atmospheric plasma-sprayed rare earth oxide coatings. Mater. Des. 2012, 39, 234–252. [Google Scholar] [CrossRef]
- Ivosevic, M.; Knight, R.; Kalidindi, S.; Palmese, G.; Sutter, J. Solid particle erosion resistance of thermally sprayed functionally graded coatings for polymer matrix composites. Surf. Coat. Technol. 2006, 200, 5145–5151. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, S.; Wang, S.; Wang, H.; Ramachandran, C.S. Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int. J. Refract. Met. Hard Mater. 2019, 81, 242–252. [Google Scholar] [CrossRef]
- Matthews, S.; James, B.; Hyland, M. High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions. Corros. Sci. 2013, 70, 203–211. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Q.; Chen, J.; Ramachandran, C.S. Abrasion, sliding wear, corrosion, and cavitation erosion characteristics of a duplex coating formed on AZ31 Mg alloy by sequential application of cold spray and plasma electrolytic oxidation techniques. Mater. Today Commun. 2021, 26, 101978. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Q.; Oka, D.; Ramachandran, C.S. On the PEO treatment of cold sprayed 7075 aluminum alloy and its effects on mechanical, corrosion and dry sliding wear performances thereof. Surf. Coat. Technol. 2019, 383, 125271. [Google Scholar] [CrossRef]
- Cernuschi, F.; Lorenzoni, L.; Capelli, S.; Guardamagna, C.; Karger, M.; Vaßen, R.; von Niessen, K.; Markocsan, N.; Menuey, J.; Giolli, C. Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings. Wear 2011, 271, 2909–2918. [Google Scholar] [CrossRef]
- Ramachandran, C.S.; Balasubramanian, V.; Varahamoorthy, R.; Babu, S. Effect of abrasive slurry parameters on wear behaviour of cobalt-based (stellite) plasma transferred arc hardfaced surface. Int. J. Surf. Sci. 2008, 2, 502–519. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Roy, M. Tribology of thermal-sprayed coatings. In Surface Engineering for Enhanced Performance against Wear; Roy, M., Ed.; Print Force: Culemborg, The Netherlands; Springer: Friesach, Austria, 2013; pp. 1–43. [Google Scholar]
- Bao, L.; Kameel, H.; Kemmochi, K. Effects of fiber orientation angles of fiber-reinforced plastic on sand solid particle erosion behaviors. Adv. Compos. Mater. 2016, 25, 81–93. [Google Scholar] [CrossRef]
- Mathias, P.; Wu, W.; Goretta, K.; Routbort, J.; Groppi, D.; Karasek, K. Solid particle erosion of a graphite-fiber-reinforced bismaleimide polymer composite. Wear 1989, 135, 161–169. [Google Scholar] [CrossRef]
- Khurana, S.; Varun; Kumar, A. Effect of silt particles on erosion of Turgo impulse turbine blades. Int. J. Ambient Energy 2013, 35, 155–162. [Google Scholar] [CrossRef]
- Finne, I. Erosion of surfaces by solid particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Bitter, J. A study of erosion phenomena: Part II. Wear 1963, 6, 169–190. [Google Scholar] [CrossRef]
- Amarendra, H.J.; Kalhan, P.; Chaudhari, G.P.; Nath, S.K.; Kumar, S. Slurry Erosion Response of Heat Treated 13Cr-4Ni Martensitic Stainless Steel. Mater. Sci. Forum 2012, 710, 500–505. [Google Scholar] [CrossRef]
- Kishor, B.; Chaudhari, G.; Nath, S. Slurry erosion of thermo-mechanically processed 13Cr4Ni stainless steel. Tribol. Int. 2016, 93, 50–57. [Google Scholar] [CrossRef]
- Prasad, R.V.; Rajesh, R.; Thirumalaikumarasamy, D.; Vignesh, S.; Sreesabari, S. Sensitivity analysis and optimisation of HVOF process inputs to reduce porosity and maximise hardness of WC-10Co-4Cr coatings. Sādhanā 2021, 46, 149. [Google Scholar] [CrossRef]
- Katranidis, V.; Gu, S.; Allcock, B.; Kamnis, S. Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part A: Influence of kinematic spray parameters on thickness, porosity, residual stresses and microhardness. Surf. Coat. Technol. 2017, 311, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Sapate, S.G.; Tangselwar, N.; Paul, S.N.; Rathod, R.C.; Mehar, S.; Gowtam, D.S.; Roy, M. Effect of Coating Thickness on the Slurry Erosion Resistance of HVOF-Sprayed WC-10Co-4Cr Coatings. J. Therm. Spray Technol. 2021, 30, 1–15. [Google Scholar] [CrossRef]
- Bhandari, S.; Singh, H.; Kumar, S.; Rastogi, V. Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions. J. Therm. Spray Technol. 2012, 21, 1054–1064. [Google Scholar] [CrossRef]
- Kumar, R.E.; Kamaraj, M.; Seetharamu, S.; Kumar, S.A. A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni Steel for hydro turbine ap-plications. Mater. Des. 2017, 132, 79–95. [Google Scholar]
- Thakur, L.; Arora, N. A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear 2013, 303, 405–411. [Google Scholar] [CrossRef]
- Vignesh, S.; Balasubramanian, V.; Sridhar, K.; Thirumalaikumarasamy, D. Slurry Erosion Behavior of HVOF-Sprayed Amorphous Coating on Stainless Steel. Met. Microstruct. Anal. 2019, 8, 462–471. [Google Scholar] [CrossRef]
- Thakur, L.; Arora, N.; Jayaganthan, R.; Sood, R. An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings. Appl. Surf. Sci. 2011, 258, 1225–1234. [Google Scholar] [CrossRef]
- Wu, Y.; Hong, S.; Zhang, J.; He, Z.; Guo, W.; Wang, Q.; Li, G. Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int. J. Refract. Met. Hard Mater. 2012, 32, 21–26. [Google Scholar] [CrossRef]
- Daniel, C.; Ribu, R.; Rajesh, D.; Thirumalaikumarasamy, S. Vignesh Influence of rotational speed, angle of impingement, concentration of slurry and exposure time on erosion performance of HVOF sprayed cermet coatings on 35CrMo steel. Mater. Today Proc. 2021, 46, 7518–7530. [Google Scholar]
- Ahmed, R.; Vourlias, G.; Algoburi, A.; Vogiatzis, C.; Chaliampalias, D.; Skolianos, S.; Berger, L.-M.; Paul, S.; Faisal, N.H.; Toma, F.-L.; et al. Comparative Study of Corrosion Performance of HVOF-Sprayed Coatings Produced Using Conventional and Suspension WC-Co Feedstock. J. Therm. Spray Technol. 2018, 27, 1579–1593. [Google Scholar] [CrossRef] [Green Version]
- Mi, P.; Ye, F. Structure and wear performance of the atmospheric heat-treated HVOF sprayed bimodal WC-co coating. Int. J. Refract. Met. Hard Mater. 2018, 76, 185–191. [Google Scholar] [CrossRef]
- ASTM B276-05; Standard Test Method for Apparent Porosity in Cemented Carbides. American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM C633-01; Standard Test Method for Tensile Adhesion or Cohesion Strength of Thermal Spray Coatings. American Society for Testing and Materials: West Conshohocken, PA, USA, 2008.
- ASTM G75-07 Standard; Standard Test Method for Determination of Slurry Abrasivity and Slurry Abrasion Response of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2007.
- Shanmugam, D.T.; Balasubramanian, V. Establishing empirical relationships to predict poros-ity level and corrosion rate of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy. J. Magnes. Alloy. 2014, 2, 140–153. [Google Scholar]
- Benyounis, K.; Olabi, A.G.; Hashmi, M. Multi response optimization of CO2 laserwelding process of austenitic stainless steel. Opt. Laser Technol. 2008, 40, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Al-Bukhaiti, M.; Ahmed, S.; Badran, F.; Emara, K. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 2007, 262, 1187–1198. [Google Scholar] [CrossRef]
- Nandre, B.D.; Desale, G.R. Study the Effect of Impact Angle on Slurry Erosion Wear of Four Different Ductile Materials. Mater. Today Proc. 2018, 5, 7561–7570. [Google Scholar] [CrossRef]
- Hutchings, I.M. Normal impact of metal projectiles against a rigid target at low velocities. Int. J. Mech. Sci. 1981, 23, 255–261. [Google Scholar] [CrossRef]
- Babu, A.; Perumal, G.; Arora, H.S.; Grewal, H.S. Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications. Renew. Energy 2021, 180, 1044–1055. [Google Scholar] [CrossRef]
- Venter, A.M.; Luzin, V.; Marais, D.; Sacks, N.; Ogunmuyiwa, E.N.; Shipway, P.H. Interdependence of slurry erosion wear performance and residual stress in WC-12wt.% Co and WC-10wt.% VC-12wt.% Co HVOF coatings. Int. J. Refract. Met. Hard Mater. 2019, 87, 105101. [Google Scholar] [CrossRef]
- Ludwig, G.A.; Malfatti, C.; Schroeder, R.M.; Ferrari, V.Z.; Muller, I.L. WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion. Surf. Coat. Technol. 2019, 377, 124918. [Google Scholar] [CrossRef]
- Santacruz, G.; Takimi, A.S.; De Camargo, F.V.; Bergmann, C.P.; Fragassa, C. Comparative Study of Jet Slurry Erosion of Martensitic Stainless Steel with Tungsten Carbide HVOF Coating. Metals 2019, 9, 600. [Google Scholar] [CrossRef] [Green Version]
- NoorbakhshNezhad, A.H.; MohammadiZahrania, E.; Alfantazi, A.M. Erosion-corrosion of electrodeposited superhydrophobic Ni-Al2O3nanocomposite coatings under jet saline-sand slurry impingement. Corros. Sci. 2022, 1978, 110095. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.; Zhang, J.; Zheng, Y.; Zheng, Y.; Lin, J. Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by HVOF spraying. Ultrason. Sonochem. 2016, 31, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.A.D.; Neville, A. Corrosion and erosion damage mechanisms during erosion-corrosion of WC-Co-Cr cermet Coatings. Wear 2003, 255, 146–156. [Google Scholar] [CrossRef]
- Afzal, A.; Samee, A.D.M.; Javad, A.; Shafvan, S.A.; Ajinas, P.V.A.; Kabeer, K.M.A. Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf.-Asian Res. 2017, 47, 556–568. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Afzal, A.; Safaei, M.R.; Manokar, A.M.; El-Seesy, A.I.; Mujtaba, M.A.; Samuel, O.D.; Badruddin, I.A.; Ahmed, W.; Shahapurkar, K.; et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J. Therm. Anal. 2020, 147, 525–542. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Afzal, A.; Kareemullah, M. Waste coconut oil methyl ester with and without additives as an alternative fuel in diesel engine at two different injection pressures. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–19. [Google Scholar] [CrossRef]
- Verma, T.N.; Nashine, P.; Chaurasiya, P.K.; Rajak, U.; Afzal, A.; Kumar, S.; Singh, D.V.; Azad, A.K. The effect of ethanol-diesel-biodiesel blends on combustion, performance and emissions of a direct injection diesel engine. Sustain. Energy Tech-Nologies Assess. 2020, 42, 100851. [Google Scholar] [CrossRef]
- Afzal, A.; Aabid, A.; Khan, A.; Khan, S.A.; Rajak, U.; Verma, T.N.; Kumar, R. Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded high-speed aerodynamic flows. Aerosp. Sci. Technol. 2020, 107, 106318. [Google Scholar] [CrossRef]
- Afzal, A.; Saleel, C.A.; Badruddin, I.A.; Khan, T.Y.; Kamangar, S.; Mallick, Z.; Samuel, O.D.; Soudagar, M.E. Human thermal comfort in passenger vehicles using an organic phase change material—An experimental investigation, neural network modelling, and optimization. Build. Environ. 2020, 180, 107012. [Google Scholar] [CrossRef]
- Aneeque, M.; Alshahrani, S.; Kareemullah, M.; Afzal, A.; Saleel, C.; Soudagar, M.; Hossain, N.; Subbiah, R.; Ahmed, M. The combined effect of alcohols and Calophyllum inophyllum biodiesel using response surface methodology optimization. Sustainability 2021, 13, 7345. [Google Scholar] [CrossRef]
- Afzal, A.; Mokashi, I.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer. Heat Transf. Part A Appl. 2020, 79, 406–435. [Google Scholar] [CrossRef]
- Praveen, A.S.; Arjunan, A. High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC-Co coatings. Appl. Surf. Sci. Adv. 2022, 7, 100191. [Google Scholar] [CrossRef]
- Nagaraja, S.; Kodanda, R.; Ansari, K.; Kuruniyan, M.S.; Afzal, A.; Kaladgi, A.R.; Aslfattahi, N.; Saleel, C.A.; Gowda, A.C.; Bindiganavile Anand, P. Influence of Heat Treatment and Reinforcements on Tensile Characteristics of Aluminium Aa 5083/Silicon Carbide/Fly Ash Composites. Materials 2021, 14, 5261. [Google Scholar] [CrossRef]
- Chairman, C.A.; Ravichandran, M.; Mohanavel, V.; Sathish, T.; Rashedi, A.; Alarifi, I.M.; Badruddin, I.A.; Anqi, A.E.; Afzal, A. Mechanical and Abrasive Wear Performance of Titanium Di-Oxide Filled Woven Glass Fibre Reinforced Polymer Composites by Using Taguchi and Edas Approach. Materials 2021, 14, 5257. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Khan, M.; Khan, S.A.; Afzal, A.; Subbiah, R.; Bakar, E.A. Determination of Non-Recrystallization Temperature for Niobium Microalloyed Steel. Materials 2021, 14, 2639. [Google Scholar] [CrossRef]
- Sharath, B.N.; Venkatesh, C.V.; Afzal, A. Multi Ceramic Particles Inclusion in the Aluminium Matrix and Wear Characterization through Experimental and Response Surface-Artificial Neural Networks. Materials 2021, 14, 2895. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Prakash, S. Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments. Surf. Coat. Technol. 2011, 206, 530–541. [Google Scholar] [CrossRef]
- Sathish, T.; Mohanavel, V.; Arunkumar, T.; Raja, T.; Rashedi, A.; Alarifi, I.M.; Badruddin, I.A.; Algahtani, A.; Afzal, A. Investigation of Mechanical Properties and Salt Spray Corrosion Test Parameters Optimization for Aa8079 with Reinforcement of Tin + Zro2. Materials 2021, 14, 5260. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, S.; Nagegowda, K.U.; Kumar, V.A.; Alamri, S.; Afzal, A.; Thakur, D.; Kaladgi, A.R.; Panchal, S.; Saleel, C.A. Influence of the Fly Ash Material Inoculants on the Tensile and Impact Characteristics of the Aluminum AA 5083/7.5SiC Composites. Materials 2021, 14, 2452. [Google Scholar] [CrossRef] [PubMed]
- Rethnam, G.S.N.; Manivel, S.; Sharma, V.K.; Srinivas, C.; Afzal, A.; Razak, R.K.A.; Alamri, S.; Saleel, C.A. Parameter Study on Friction Surfacing of AISI316Ti Stainless Steel over EN8 Carbon Steel and Its Effect on Coating Dimensions and Bond Strength. Materials 2021, 14, 4967. [Google Scholar] [CrossRef] [PubMed]
- Jeevan, T.P.; Jayaram, S.R.; Afzal, A.; Manzoore, H.S.A.; Soudagar, E.M. Machinability of AA6061 Aluminum Alloy and AISI 304L Stainless Steel Using Nonedible Vegetable Oils Applied as Minimum Quantity Lubrication. J. Brazilian Soc. Mech. Sci. Eng. 2021, 43, 159. [Google Scholar] [CrossRef]
- Sathish, T.; Mohanavel, V.; Ansari, K.; Saravanan, R.; Karthick, A.; Afzal, A.; Alamri, S.S. Synthesis and Characterization of Mechanical Properties and Wire Cut EDM Process Parameters Analysis in AZ61. Materials 2021, 14, 3689. [Google Scholar] [CrossRef]
Process Parameters | Range |
---|---|
Oxygen flow rate | 253 lpm |
LPG flow rate | 61 lpm |
Powder feed rate | 35 g/min |
Spray distance | 227 mm |
Element | Wt.% | At.% | Element | Wt.% | At.% |
---|---|---|---|---|---|
W K | 87.32 | 68.13 | W K | 85.66 | 64.21 |
Co K | 9.10 | 21.98 | Co K | 9.47 | 24.58 |
C K | 3.58 | 9.91 | C K | 4.87 | 11.61 |
Total | 100 | - | Total | 100 | - |
(a) WC-10Co powder | (b) WC-10Co coating |
S. No. | Factors | Notations | Units | Levels | ||||
---|---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||||
1 | Angle of impingement | A | deg. | 35 | 50 | 65 | 80 | 95 |
2 | Water jet velocity | V | m/s | 10 | 20 | 30 | 40 | 50 |
3 | Standoff distance | D | mm | 30 | 35 | 40 | 45 | 50 |
4 | Erodent discharge | F | gpm | 500 | 1000 | 1500 | 2000 | 2500 |
Exp. Condition | Variables (Factors) | Responses | ||||
---|---|---|---|---|---|---|
Angle of Impingement (A) Deg | Water Jet Velocity (V) m/s | Standoff Distance (D) mm | Erodent Discharge (F) gpm | Mass Loss of Uncoated Substrate (g) | Mass Loss of Coatings (g) | |
1 | 45 | 20 | 40 | 1000 | 0.0594 | 0.0223 |
2 | 75 | 20 | 40 | 1000 | 0.0881 | 0.033 |
3 | 45 | 40 | 40 | 1000 | 0.2603 | 0.0976 |
4 | 75 | 40 | 40 | 1000 | 0.2689 | 0.1008 |
5 | 45 | 20 | 50 | 1000 | 0.0841 | 0.0315 |
6 | 75 | 20 | 50 | 1000 | 0.0986 | 0.037 |
7 | 45 | 40 | 50 | 1000 | 0.2604 | 0.0977 |
8 | 75 | 40 | 50 | 1000 | 0.2884 | 0.1082 |
9 | 45 | 20 | 40 | 2000 | 0.0381 | 0.0143 |
10 | 75 | 20 | 40 | 2000 | 0.0434 | 0.0163 |
11 | 45 | 40 | 40 | 2000 | 0.2104 | 0.0789 |
12 | 75 | 40 | 40 | 2000 | 0.2613 | 0.098 |
13 | 45 | 20 | 50 | 2000 | 0.0589 | 0.0221 |
14 | 75 | 20 | 50 | 2000 | 0.0773 | 0.029 |
15 | 45 | 40 | 50 | 2000 | 0.2197 | 0.0824 |
16 | 75 | 40 | 50 | 2000 | 0.2894 | 0.1085 |
17 | 30 | 30 | 45 | 1500 | 0.1042 | 0.0391 |
18 | 90 | 30 | 45 | 1500 | 0.1411 | 0.0529 |
19 | 60 | 10 | 45 | 1500 | 0.0131 | 0.0049 |
20 | 60 | 50 | 45 | 1500 | 0.3687 | 0.1383 |
21 | 60 | 30 | 35 | 1500 | 0.1302 | 0.0488 |
22 | 60 | 30 | 55 | 1500 | 0.1718 | 0.0644 |
23 | 60 | 30 | 45 | 500 | 0.2103 | 0.0789 |
24 | 60 | 30 | 45 | 2500 | 0.1869 | 0.0701 |
25 | 60 | 30 | 45 | 1500 | 0.1312 | 0.0492 |
26 | 60 | 30 | 45 | 1500 | 0.1348 | 0.0506 |
27 | 60 | 30 | 45 | 1500 | 0.1295 | 0.0486 |
28 | 60 | 30 | 45 | 1500 | 0.1307 | 0.049 |
29 | 60 | 30 | 45 | 1500 | 0.1247 | 0.0468 |
30 | 60 | 30 | 45 | 1500 | 0.1361 | 0.051 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | Title |
---|---|---|---|---|---|---|
Model | 3.105 × 10−3 | 4 | 7.763 × 10−4 | 48.81 | <0.0001 | Significant |
Angle of impingement | 1.862 × 10−3 | 1 | 1.862 × 10−3 | 117.10 | <0.0001 | - |
Jet velocity | 8.777 × 10−4 | 1 | 8.777 × 10−4 | 55.18 | <0.0001 | - |
Standoff distance | 4.461 × 10−4 | 1 | 4.461 × 10−4 | 28.05 | <0.0001 | - |
Erodent discharge | 1.050 × 10−5 | 1 | 1.050 × 10−5 | 0.66 | 0.4243 | - |
Residual | 3.976 × 10−4 | 25 | 1.590 × 10−5 | - | - | - |
Lack of fit | 3.468 × 10−4 | 21 | 1.651 × 10−5 | 1.30 | 0.4431 | Not significant |
Pure error | 5.085 × 10−5 | 4 | 1.271 × 10−5 | - | - | - |
Core total | 3.503 × 10−3 | 29 | R2 = 0.9987 | - | - | - |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | Title |
---|---|---|---|---|---|---|
Model | 3.036 × 10−3 | 4 | 7.589 × 10−4 | 1419.81 | <0.0001 | Significant |
Angle of impingement | 1.840 × 10−3 | 1 | 1.840 × 10−3 | 3441.47 | <0.0001 | - |
Jet velocity | 9.346 × 10−4 | 1 | 9.346 × 10−4 | 1748.42 | <0.0001 | - |
Standoff distance | 4.067 × 10−4 | 1 | 4.067 × 10−4 | 760.87 | <0.0001 | - |
Erodent discharge | 2.396 × 10−6 | 1 | 2.396 × 10−6 | 4.48 | 0.0444 | - |
Residual | 1.336 × 10−5 | 25 | 5.345 × 10−7 | - | - | - |
Lack of fit | 1.286 × 10−5 | 21 | 6.125 × 10−7 | 4.90 | 0.0667 | Not significant |
Pure error | 5.000 × 10−7 | 4 | 1.250 × 10−7 | - | - | - |
Core total | 3.049 × 10−3 | 29 | R2 = 0.9942 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribu, D.C.; Rajesh, R.; Thirumalaikumarasamy, D.; Ramachandran, C.S.; Ahamed Saleel, C.; Aabid, A.; Baig, M.; Saleh, B. Investigating the Water Jet Erosion Performance of HVOF-Sprayed WC-10Co Coatings on 35CrMo Steel Utilizing Design of Experiments. Coatings 2022, 12, 482. https://doi.org/10.3390/coatings12040482
Ribu DC, Rajesh R, Thirumalaikumarasamy D, Ramachandran CS, Ahamed Saleel C, Aabid A, Baig M, Saleh B. Investigating the Water Jet Erosion Performance of HVOF-Sprayed WC-10Co Coatings on 35CrMo Steel Utilizing Design of Experiments. Coatings. 2022; 12(4):482. https://doi.org/10.3390/coatings12040482
Chicago/Turabian StyleRibu, Daniel C., Rajamony Rajesh, Duraisamy Thirumalaikumarasamy, Chidambaram Seshadri Ramachandran, C. Ahamed Saleel, Abdul Aabid, Muneer Baig, and Bahaa Saleh. 2022. "Investigating the Water Jet Erosion Performance of HVOF-Sprayed WC-10Co Coatings on 35CrMo Steel Utilizing Design of Experiments" Coatings 12, no. 4: 482. https://doi.org/10.3390/coatings12040482
APA StyleRibu, D. C., Rajesh, R., Thirumalaikumarasamy, D., Ramachandran, C. S., Ahamed Saleel, C., Aabid, A., Baig, M., & Saleh, B. (2022). Investigating the Water Jet Erosion Performance of HVOF-Sprayed WC-10Co Coatings on 35CrMo Steel Utilizing Design of Experiments. Coatings, 12(4), 482. https://doi.org/10.3390/coatings12040482