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Abstract: The erosion of the unmelted CaO-MgO-Al2O3-SiO2 (CMAS) particle is one of the dominat-
ing factors that causes microcracks in thermal barrier coatings (TBCs) when an aeroengine operates
under actual service conditions. The microcracks provide a pathway for the erosion of the TBCs by
the molten CMAS particles, which accelerates the failure of the coating. Herein a simplified model
to mimic the erosion of YSZ (Y2O3 stabilized ZrO2) TBCs by the CMAS particles with high speed is
proposed. The finite element method was utilized to systematically investigate the physical damage
behaviors of the TBCs by the CMAS particles under various contact configurations, impact velocities
and impact angles. We show that the contact configuration has a significant impact on the residual
stress of the coating surfaces as well as the formation and types of microcracks. Furthermore, the
increment of the erosion velocity gave rise to irreversible deformation around the point of contact,
which aggravated the stress conditions of the top layer and led to the delamination failure of the
coating. Finally, the larger the erosion angle, the more mechanical energy was converted into internal
energy, which accumulated in the YSZ and caused it to finally delaminate.

Keywords: thermal barrier coatings; CMAS erosion; finite element simulation; residual stress;
failure mechanism

1. Introduction

As mainstream coating materials, thermal barrier coatings (TBCs) are usually coated
onto the surface of superalloys. Apart from being used as the thermal insulation part
of critical industrial components, TBCs are also widely used in aeroengines or gas tur-
bines with high working temperatures. The main composition of TBCs is yttria-stabilized
zirconia (YSZ). Y2O3-ZrO2 composite powder with a mass ratio of 7% Y2O3 is usually
deposited onto the surface of the metallic layer by electron beam–physical vapor deposition
(EB–PVD) or atmospheric plasma spraying (APS) [1]. Therefore, TBCs usually consist of
two layers: the ceramic top-coat (TC) layer which provides thermal insulation and the
bond-coat (BC) layer which is deposited between the ceramic layer and superalloy substrate.
The BC layer is to prevent the oxidation of the substrate and provide necessary adhesion
between the coating and the substrate [2]. YSZ coating is widely used in engineering due
to its excellent structural stability, high thermal shock resistance, relatively large thermal
expansion coefficient and high fracture toughness.

There are many factors leading to the failure of TBCs, which generally can be cate-
gorized into two types: the material properties and the environmental impacts [3,4]. The
material properties are the layered structure and pores and microcracks on the interior
and surface of the coatings. Environmental impacts mainly concern damage of the TBCs
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by operating conditions, including thermal shock, high-temperature oxidation and parti-
cle erosion [5]. As shown in Figure 1, regardless of the failure modes of TBCs, it can be
attributed to crack propagation and interface delamination [6].
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As for blades in gas turbines applied in aviation propulsion or power generation, when
the blades were operated under conditions full of foreign particles, especially silicate based
particles in the air (possibly from volcanic ash, sand, concrete dust and other ways), these
solid particles are sucked into the compressor together with the air in the engine intake
and erode the interior of the engine at a certain speed [7]. The source of corrosion damage
is thus caused by foreign objects hitting the internal parts of the turbine. The high-pressure
turbine components in advanced aeroengines are damaged due to CaO-MgO-Al2O3-SiO2
(CMAS) erosion, degrading their service performance [8]. The design of the emerging gas
turbine has always been targeted at increasing the inlet temperature of the engine, for the
sake of improving the thermal efficiency. However, the increase of inlet air temperature
will bring some adverse effects. With the increase of inlet temperature, the possibility
of silicon-based particles being heated above their melting point has also significantly
increased [9]. Yang et al. [10] have found that the thicker the deposition thickness of CMAS,
the easier it is to form cracks at the YSZ/BC interface during cooling. However, during
the process of the suction of the engine, the damage of the particle erosion to the engine
cannot be ignored. Due to the complexity of the erosion, it becomes difficult to determine
the erosion damage mechanism just though experiments. Therefore, the exploration of
CMAS particle erosion via finite element simulation becomes more and more important.
Cai et al. [11] have studied the failure mechanism of CMAS corrosion and erosion of
TBCs by developing a three-dimensional model of a turbine blade coated with TBCs and
summarized the key factors affecting the spalling failure of TBCs. Su et al. [12] have
established the penetration behavior of CMAS during the high-temperature operation of
thermal barrier coatings fabricated by electron beam–physical vapor deposition (EB–PVD).
They also studied the evolution process of bending of the thermally grown oxide (TGO)
during the penetration process and obtained the influence factors of the CMAS erosion on
the effective elastic modulus of the TC layer in the EB–PVD TBCs during the penetration
process of CMAS. Reducing the impact of CMAS particles on the coating can effectively
improve the performance of the coating. The damage effect of CMAS on YSZ coating
has attracted extensive attention in the industry. Stefania Morelli et al. [13] studied the
corrosion process of YSZ TBCs prepared by two different techniques (APS, SPS) caused by
molten CMAS particles and it was concluded that the molten CMAS preferentially attack
and dissolve the boundary between the YSZ grains. Thus, the YSZ grains are completely
separated and the coating fails. Wang et al. [14] have conducted a series of experiments
at 1350 ◦C on three different YSZ TBCs prepared by atmospheric plasma spraying (APS)
and found that Y3+ in YSZ diffused from ceramic layer to CMAS melt, formed Y-poor
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ZrO2 and Ca4Y6(SiO4)6O/Y4·67(SiO4)3O in TBCs and the failure of 8YSZ occurred at the
interface between the ceramic layer and the TGO/ bond-coat layer. Molten CMAS particles
entered the coating via cracks on the surface of the ceramic coating, resulting in coating
failure. Note that the incompletely melted or unmelted CMAS particles cause damage to
the coating when the YSZ suffered impact erosion at high speeds, resulting in more cracks,
which shorten the service time of the YSZ. However, the reported research methods are
not enough to determine the change of the internal residual stress of the coating during
erosion, as well as the distribution and evolution characteristics of the residual stress of
TBCs. What is more, the numerical simulation method can be used to systematically study
the characteristics of the residual stress of the TBCs.

Finite element simulation methods were used to study the impact erosion behavior
of CMAS particles. Controllable parameters were chosen, including the impact velocity,
impact angle and morphology of the CMAS particles. Through the analysis of the simu-
lation results, the critical factors leading to the coating failure were uncovered, and the
effects of the impact velocity and angle on the residual stress of TBCs were also investigated
systematically in this work.

2. Materials and Methods
2.1. Geometric Model

In this work, YSZ coating was sprayed onto the cylindrical GH3128 superalloy sub-
strate with the dimensions of Ø25 mm × 6 mm. The ceramic layer (YSZ) was set to 300 µm.
The thickness of the BC layer (NiCoCrAlY) was set to 140 µm [15,16]. The coating and the
substrate were connected through a shared topology, and the interface was set as a shared
interface. The aeroengine inhaled various shapes of particles under service conditions, and
the contact forms of these particle impacts were categorized into point contact, line contact
and surface contact. Finite element simulations of the effects of particle erosion on coatings
were performed for these three contact forms. These three contact forms were obtained by
changing the morphology of the particles. The diameter of spherical CMAS particles and
the side length of cube CMAS particles were both set as 0.05 mm, which erode the YSZ
coating at different angles and speeds. Of the two, square CMAS particles had two contact
modes, namely surface and edge contact. The impact of spherical particles can be regarded
as point contact.

As shown in Figure 2, the model is symmetrical, in terms of geometry. The load
and boundary conditions are also symmetrical. In order to speed up the solution, the
axisymmetric section was established for the finite element model which was used for
solution analysis. The schematic illustration of the three-dimensional model is shown in
Figure 2a. Figure 2b is a plane model to simplify the calculation.
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2.2. Assumptions of the Finite Element Model

The basic assumptions can be described as follows: (1) the interface between the TBCs
and the substrate is well bonded, and the whole model is not affected by external force.
There are no defects between the coating and GH3128 substrate, and the defects such as
pores and cracks on the inside of the coatings are not considered; (2) there is no fluctuation
at the interface between the coating and substrate; (3) it is assumed that CMAS erodes the
coating surface under the room temperature of 25◦ and there is no stress; (4) the coating
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material is linear elastic and isotropic, and the substrate can have plastic deformation;
(5) the performance parameters of CMAS particles, TBCs and substrates remains constant
with varying temperatures.

2.3. Numerical Simulation of the Impact Erosion Behavior

During the simulation process, the ambient temperature of the whole coating system
is set at 25 ◦C, and the material property can be viewed as mixed elastic–plastic. The
initial conditions were standard earth gravity, fixed support at the bottom and the initial
velocity of CMAS particles with different shapes. A gap of 0.005 mm was set between
CMAS particles and coating to prevent mutual interference between the unit of the model.
The contact between the particles and the coating was set as a frictional one. The Coulomb
friction was invoked in the calculation, and the friction coefficient was set as 0.1 [17]. The
geometric interaction behavior among the layers was set as binding, and the maximum
offset was 0.0001 mm, which made the interaction at the interface more in line with actual
scenes. The entire two-dimensional model was established by a shell element, and the
mechanical behavior of the two-dimensional model was set to “plane strain”. Since the
simulation type belongs to the category of nonlinear explicit dynamic methods, the physical
preference of the element was set to “explicit”. The element mesh types of the substrate
and coating were quadrilateral. In order to improve the calculation effectively, the mesh of
coating and CMAS particles was refined. The size of mesh is very important in the process
of finite element simulation. Too dense, and the grid will increase the computing time
and reduce the computing efficiency; too sparse, and the grid will affect the computing
accuracy. A trade-off between the accuracy and computing efficiency is thus needed.
In the calculation process, the element solution and node solution were compared. When
the error between the element solution and node solution was less than 5%, the meshing
was considered to be reasonable. Because we mainly focused on the impact of CMAS
particles on the coating and interface, the generated mesh of the substrate was sparse in
order to reduce the efforts of computing. The portion of mesh is shown in Figure 3.
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2.4. Physical Properties of Materials

In order to better understand the influence of APS morphology on the erosion resis-
tance of the coating, we calculated the elastic modulus of 8YSZ following a method from
the literature [18–20]. It was ascertained that the elastic modulus of 8YSZ was 48 GPa
at 25 ◦C, which was consistent with the widely reported range from 25 GPa to 48 GPa given
in the literature [18,21], and the overall difference may be due to the difference in overall
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porosity and the morphologies of the pores, which were distributed randomly on the inside
of the coating.

The parameters of the physical properties of YSZ, NiCoCrAlY and substrate GH3128
are shown in Table 1. Mohan et al. [22] found that the configured CMAS composition can be
equivalent to that of CMAS particles under actual service conditions via the experimental
method. It was further found that the morphology and failure mechanism of CMAS corro-
sion powder configured in the laboratory was basically consistent with that of TBCs, which
are coated onto the engine turbine blades in the actual service process. The composition of
CaO-MgO-Al2O3-SiO2 in CMAS particles in the current study is shown in Table 2.

Therefore, the physical property parameters of the corresponding CMAS particles can
be calculated by using the mixing law [6],

yc= Σkiyi, (1)

where yi and yc are the thermophysical parameters of the material before and after mixing;
and ki is the mass fraction of material i. The elastic modulus of CMAS can be converted
using the following formula:

E = E0

(
1− 1.9ϕ+ 0.9ϕ2

)
, (2)

where E0 and E are the elastic modulus of dense material and actual materials, respectively,
and ϕ is the porosity.

Table 1. Material properties of YSZ, NiCoCrAlY and GH3128 [23–26].

Materials Temperature
(◦C)

Elasticity
Modulus (GPa)

Poisson’s
Ratio

Thermal
Expansion
Coefficient

(×10−6 ◦C−1)

Thermal
Conductivity

(W/m·K)

Specific
Heat

(J/kg·◦C)

Density
(kg/m3)

YSZ 25 48 0.1 10.4 1.8 640 5.28 × 103

NiCoCrAlY 25 152.4 0.1 12.3 4.3 501 5.28 × 103

GH3128 25 220 0.31 14.8 4.3 658 8.15 × 103

Table 2. Chemical composition of the CMAS system; the values are given in mol% [22].

Oxide CaO MgO Al2O3 SiO2

Concentration 33 9 13 45

3. Results and Discussion

As shown in Figure 4a, in order to facilitate comparison and understand the damage
of impact on the TBCs and the interfaces of each coating layer, three paths are defined.
The contact layer between the YSZ top layer and the CMAS particles is defined as “path 1”,
the interface between the YSZ layer and the NiCoCrAlY layer is defined as “path 2” and the
interface between the NiCoCrAlY layer and the substrate is defined as “path 3”. The default
direction of each coating is from left to right. In order to ensure the continuity of data, we
took a stress point every 0.01 mm on the path and connected each stress point, i.e., the stress
distribution along the path. Based on the combination of the velocity of CMAS particles
moving in the X and Y directions, several parameters (erosion velocity, erosion angle and
particle shape) under the high-speed erosion damage of CMAS to YSZ coating can be studied
by using the controlled variable method. The erosion angles are respectively 30◦, 45◦, 60◦

and 90◦. The particle erosion velocities of CMAS are, respectively, 20 m/s, 50 m/s and 100 m/s,
with three contact types: surface contact, line contact and point contact. Erosion angle α, the
definition of erosion velocity v and the CMAS particle shape are shown in Figure 4b.
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erosion angles and velocities of CMAS particles.

When the CMAS particle impacts on the coated surface, the positive collision of
the particle on the coating is considered, i.e., α = 90◦, and this collision process can be
divided into two stages: deformation and recovery. In the deformation phase, the particle
impacts on the coating with a certain velocity, v, as during the normal phase, and the object
deformation increases rapidly due to the received collision impulse I1 on the surface of the
coating, while its velocity decreases rapidly to zero, as shown in Figure 5a. When applying
the impulse theorem on the y-axis at this stage the projection equation is:

0 − (−mv)= I1 (3)

In the second stage, the elastic deformation of the object is gradually restored and
the reverse speed is obtained. When the object leaves the fixed surface with the velocity
u, it marks the end of the collision process. Suppose the collision impulse of the second
stage is I2 and the projection formula of the impulse theorem on the y-axis is applied to the
second stage:

mu − 0 = I2 (4)

Then, due to the momentum loss during the collision, the speed u of the object after
the collision is always less than the speed v before the collision. When studying the collision
process, it was found that for an object determined by the material, regardless of the speed
before and after the collision, the ratio of the speed before and after the collision was
a constant as related to the material. This constant is called the recovery factor and is
defined as:

k =
u
v

(5)

The recovery factor reflects the degree of loss of kinetic energy of the object before and
after the collision, and also the degree of recovery of the object after deformation. Therefore,
we note that the velocity before and after the collision is related to the collision impulse in
the two phases of the collision process, which is derived from Equations (3)–(5) and can be
expressed as:

k =
I2

I1
(6)

The recovery factor is a constant that relates to the nature of the material collision. In
general, the collision process experiences kinetic energy loss, so when 0 < k < 1, it is called
elastic collision. In an ideal situation, if the kinetic energy loss were negligible, then k = 1,
and this collision could be called a completely elastic collision. In the worst scenario, if the
collision deformation did not return at all, then k = 0, and this collision would be called a
plastic collision. From the simulation results, it can be seen that the velocity of the second
stage in the collision process, u, is less than the velocity of the first stage, v; that k < 1 and
must be greater than 0, so the erosion process is an elastic collision one.
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Figure 5. (a) First and second stages of particle impact on the surface of the coating, (b) oblique
erosion of the coating by the particles.

When the particle strikes the coating with velocity v at an angle of θ in the normal
direction, the collision ends with a velocity u tuned away from the normal direction at an
angle of β, as in F Figure 5b, assuming that the collision occurs only in the normal direction.

k =
un

vn
, (7)

where un and vn are the projections of u and v in the normal direction.
Suppose the magnitude of the tangential velocity is represented by ut and vt, respec-

tively, then
untanβ = ut, vntanβ = vt. (8)

Due to the conservation of momentum in the tangent direction, there is

mut −mvt= 0. (9)

Thus, from Equations (9) and (10), the recovery factor can be expressed as

k =
tan θ
tanβ

, (10)

since k < 1, θ < βwhen the surface of the collision object tends to be smooth.

3.1. Protection of Coating to Substrate

When CMAS particles impact on the surface of the TBC and when all the kinetic
energy from the velocity is released, that is, when the velocity is 0, the residual stress in
path 1 reaches the maximum value, as shown in Figure 6. The time taken for the stress
curve of path 1 is the time point when the velocity of the CMAS particle is 0. Because
the stress wave is transmitted in the coating, as shown in Figure 7, the surface contact,
v = 100 m/s, α = 90◦ for the stress nephogram of equivalent stress at 90◦, when the time
is 6.93 × 10−7 s, v = 0 m/s, and the sampling time of path 2 and path 3 correspond to
the maximum stress value, i.e., 1.134 × 10−6 s and 1.215 × 10−6 s, respectively, so as
to compare the stress on each path. Through the study of the stress of the three paths,
it was found that the stress is significantly weakened in the transmission process, and
the maximum residual stress on path 2 and path 3 is far less than the stress on path 1,
indicating that the coating plays a good protective role on the turbine blade. According
to the theory of fracture mechanics, the maximum principal stress is the main factor for
crack nucleation [27], that is, erosion cracks are more likely to occur in the area where
the value of the maximum principal stress reaches or exceeds the limit stress required for
the material fracture, and when the stress in the contact position area on path 1 fluctu-
ates, it is symmetrically distributed. The magnitude of the stress at the contact point is
−323 MPa, which increases with a large gradient on both sides, approaches 0 MPa at
0.03 mm from the contact point and slowly increases outward, with a maximum of 112 MPa,
which is less than the ultimate stress that YSZ can bear [28]. Near the contact position,
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due to the large changes of compressive stress and tensile stress, the coating breaks and
peels off. Figure 6A(b) shows a comparison case of axial stress along the defined paths
where the maximum stress is −1124 MPa. When exploring the erosion problem of TBCs,
Chen et al. [29] showed that the radial stress perpendicular to the interface affects the
coating delamination and the shear stress determines the position of the shear band. These
two stresses are closely related to the failure of TBCs. This corresponds to Figure 6A(c,d),
in which the radial stress plays a decisive role. The maximum radial stress on path 1 is
−2103 MPa. Therefore, the radial stress and shear stress were studied. Figure 7 shows the
stress nephogram of shear stress, radial stress and axial stress in detail.

From the beginning of contact to the end of particle springing, when the velocity
of the particle v = 0 m/s, i.e., 6.93 × 10−7 s, (the contour plot of the stress at different
time is shown in Figure 7a) the stress at the contact position is −2254.2 MPa. In this case,
the YSZ coating produces deformation and internal stresses due to the extrusion of CMAS
particles, making the coating denser [30]. This produces a large angle indentation, which
also may lead to conical cracks and is consistent with the results obtained by Cai et al. [31],
i.e., the cracks caused by CMAS erosion only appear around the tissue near the CMAS
penetration interface, where the stress state is the most serious, accelerating the initiation
and propagation of cracks. Through the comparison of the related data, it was found that
the impact of spherical particles produces larger stress, so it is easier to make this crack.
Figure 7b,c shows the radial stress nephogram during CMAS particle rebound. Along
with the progress of the impact, the stress penetrates the coating. During the penetration
process, a compact area compressed into an ellipse is formed, which causes the stress to
begin transferring to the YSZ/bond-coat layer and the bond-coat layer substrate interface,
consistent with the research results of Chen et al. [25]. In the process of stress penetration,
the residual stress is concentrated at the interface of the coating, where the maximum
radial stress at the YSZ/bond-coat layer is −170.99 MPa and the maximum radial stress
at the bond-coat layer/substrate interface is −160.13 MPa, due to the protection of the
YSZ coating.

Coatings 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

cracks are more likely to occur in the area where the value of the maximum principal stress 
reaches or exceeds the limit stress required for the material fracture, and when the stress 
in the contact position area on path 1 fluctuates, it is symmetrically distributed. The mag-
nitude of the stress at the contact point is −323 MPa, which increases with a large gradient 
on both sides, approaches 0 MPa at 0.03 mm from the contact point and slowly increases 
outward, with a maximum of 112 MPa, which is less than the ultimate stress that YSZ can 
bear [28]. Near the contact position, due to the large changes of compressive stress and 
tensile stress, the coating breaks and peels off. Figure 6A(b) shows a comparison case of 
axial stress along the defined paths where the maximum stress is −1124 MPa. When ex-
ploring the erosion problem of TBCs, Chen et al. [29] showed that the radial stress per-
pendicular to the interface affects the coating delamination and the shear stress deter-
mines the position of the shear band. These two stresses are closely related to the failure 
of TBCs. This corresponds to Figures 6A(c,d), in which the radial stress plays a decisive 
role. The maximum radial stress on path 1 is −2103 MPa. Therefore, the radial stress and 
shear stress were studied. Figure 7 shows the stress nephogram of shear stress, radial 
stress and axial stress in detail. 

 
Figure 6. Cont.



Coatings 2022, 12, 576 9 of 17Coatings 2022, 12, x FOR PEER REVIEW 9 of 18 
 

 

 

 

Figure 6. The (a) maximum principal stress, (b) normal stress X, (c) shear stress XY and (d) normal 
stress Y under different contact modes: (A) point contact, (B) line contact and (C) surface contact at 
the impact velocity equal to 100 m/s and the impact angle equal to 90°. 

Figure 6. The (a) maximum principal stress, (b) normal stress X, (c) shear stress XY and (d) normal
stress Y under different contact modes: (A) point contact, (B) line contact and (C) surface contact at
the impact velocity equal to 100 m/s and the impact angle equal to 90◦.



Coatings 2022, 12, 576 10 of 17Coatings 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. The contour plot of (a–c) normal stress Y, (d–f) shear stress XY and (g–i) normal stress X 
at different times when the impact velocity equal to 100 m/s and the impact angle equal to 90°. 

From the beginning of contact to the end of particle springing, when the velocity of 
the particle v = 0 m/s, i.e., 6.93 × 10−7 s, (the contour plot of the stress at different time is 
shown in Figure 7a) the stress at the contact position is −2254.2 MPa. In this case, the YSZ 
coating produces deformation and internal stresses due to the extrusion of CMAS parti-
cles, making the coating denser [30]. This produces a large angle indentation, which also 
may lead to conical cracks and is consistent with the results obtained by Cai et al. [31], i.e., 
the cracks caused by CMAS erosion only appear around the tissue near the CMAS pene-
tration interface, where the stress state is the most serious, accelerating the initiation and 
propagation of cracks. Through the comparison of the related data, it was found that the 
impact of spherical particles produces larger stress, so it is easier to make this crack. Figure 
7b,c shows the radial stress nephogram during CMAS particle rebound. Along with the 
progress of the impact, the stress penetrates the coating. During the penetration process, 
a compact area compressed into an ellipse is formed, which causes the stress to begin 
transferring to the YSZ/bond-coat layer and the bond-coat layer substrate interface, con-
sistent with the research results of Chen et al. [25]. In the process of stress penetration, the 
residual stress is concentrated at the interface of the coating, where the maximum radial 
stress at the YSZ/bond-coat layer is −170.99 MPa and the maximum radial stress at the 
bond-coat layer/substrate interface is −160.13 MPa, due to the protection of the YSZ coat-
ing. 

The displacement of CMAS particles causes the TBCs in this region to form a strong 
shear region, as shown in Figure 7d. The shear stress region expands into the coating with 
the movement of particles, but the shear stress decreases immediately after the particle 
rebound and the residual stress is less than half the peak value. When the stress penetrates 
the coating, the stress builds up at the coating interface but only some residual stress is 
retained, which is less than the bonding strength of the damaged coating [32]. It can be 
seen that the coating greatly reduces the accumulation of residual stress among interfaces 
and avoids the premature failure of TBCs. 

3.2. Effect of CMAS Morphology on Coating 
The service environment of the engine is complex and dynamic, and the sources of 

particles causing damage to the coating are different, as are the shapes and sizes of parti-
cles. In this section, CMAS particles with two different shapes (cube and sphere) are stud-
ied. These two particles can be divided into three contact modes: point, line and surface 
contact. By only changing the morphology of the particles, selecting the particle velocity 
of 100 m/s and the erosion angle of 90°, the damage of the coating by different contact 

Figure 7. The contour plot of (a–c) normal stress Y, (d–f) shear stress XY and (g–i) normal stress X at
different times when the impact velocity equal to 100 m/s and the impact angle equal to 90◦.

The displacement of CMAS particles causes the TBCs in this region to form a strong
shear region, as shown in Figure 7d. The shear stress region expands into the coating with
the movement of particles, but the shear stress decreases immediately after the particle
rebound and the residual stress is less than half the peak value. When the stress penetrates
the coating, the stress builds up at the coating interface but only some residual stress is
retained, which is less than the bonding strength of the damaged coating [32]. It can be
seen that the coating greatly reduces the accumulation of residual stress among interfaces
and avoids the premature failure of TBCs.

3.2. Effect of CMAS Morphology on Coating

The service environment of the engine is complex and dynamic, and the sources of
particles causing damage to the coating are different, as are the shapes and sizes of particles.
In this section, CMAS particles with two different shapes (cube and sphere) are studied.
These two particles can be divided into three contact modes: point, line and surface contact.
By only changing the morphology of the particles, selecting the particle velocity of 100 m/s
and the erosion angle of 90◦, the damage of the coating by different contact surfaces during
erosion is explored. Since the stress state at the contact position is the most serious during
particle erosion, only the stress on path 1 was studied.

In the contact process, the larger the contact area and the larger the stress area of the
coating, the more nodes make contact with the TC layer, that is, the larger the contact
area under the same energy, the smaller the energy borne by each node. On the other
hand, the smaller the contact area, the greater the energy borne by each node and the
greater the damage and damage suffered from the contact position at the same speed and
angle. Therefore, the damage to the coating caused by point contact is the largest, which
is consistent with the simulation results in Figure 8. It can be seen from Figure 8a that
the wound surface caused by point contact is larger and the maximum principal stress
(compressive stress) presents the highest stress at the contact position and generates tensile
stress at a certain distance from the contact point. Therefore, the crack can be generated at
the initial contact point (due to compressive stress) and the crack expands radially along
the stress edge due to the edge effect.
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different shape of CMAS particle.

3.3. Effect of Particle Speed on Coating

When the CMAS erodes the coating, the energy carried by the particles is different
under different speeds and the energy transmitted to the coating when the particles come
into contact with the TC layer is different, so the damage degree to the coating is also
different. Therefore, it is very important to study the effects of erosion speed in the erosion
process on the failure modes of the TBCs. If the erosion speed is too small and the energy of
the particles hitting the coating is too low, it is not enough to cause the plastic deformation
or crack initiation of the material. Because the ceramic layer is brittle, low erosion speed
will not affect the ceramic layer. In this section, the impact of erosion particles on TC layer,
which are set to the particle speeds of 20 m/s, 50 m/s and 100 m/s, will be compared,
when the impact angle of CMAS particles is 90◦ and the contact form is the surface contact.
Deng et al. [33] and others proposed that the minimum speed of erosion wear damage
to the target after erosion is the first critical speed, V′pc. When the velocity of the particle
erosion is greater than V′pc, the target will be eroded and worn.

V′pc =
π2
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√
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t

Et

)2

, (11)

where σ is the maximum elastic limit load of the ceramic material, and where the approxi-
mate value is

σ ≈ (1.59 ∼ 3.2)σb, (12)

σb is the bending strength of the material. Applying the bending strength, the elastic
modulus and Poisson’s ratio of the YSZ coating to Formulas (4) and (5), it can be ascertained



Coatings 2022, 12, 576 12 of 17

that the first critical speed of erosion wear is 0.034~0.39 m/s. If the defined simulation
speed is far greater than this limit, erosion will occur.

Due to the uncertainty of the angle between the particle velocity direction and the
coating in the service environment, there is a connection between the critical velocity and
the incidence angle of CMAS. As shown in Figure 4b, the angle between the velocity
direction and the coating is α (α < 90◦) and the critical velocity, Vpc, can be expressed as

Vpc =
V′pc

sinα
(13)

It can be seen from the equation that the critical velocity required to cause damage to
the coating is larger when α is smaller and tends to infinity when α tends to 0.

Figure 9a shows the relationship between the particle erosion speed and the maximum
residual stress along path 1. It can be seen that when the particle speed increases, the
stress increases approximately linearly and that the growth rate of the shear stress and
axial stress is almost the same. According to this characteristic, we can roughly infer the
approximate stress range at each speed. According to the comparison figure of the axial
stress in Figure 9c, during the erosion process the contact position is squeezed by the
CMAS particles and the compressive stress is concentrated. The axial stress on the coating
surface is concentrated near the contact position in the form of tensile stress on the coating
surface and diffuses to both sides in the continued erosion process. When the energy from
particles with the speed of v = 100 m/s is fully released, the compressive stress at the contact
position increases. At the same time, the tensile stress is concentrated at about 0.04 mm
from the erosion position, as shown in Figure 9d. When the stress difference is too large,
under the action of axial tensile stress and axial compressive stress, it is easier to initiate
transverse cracks along the surface of the coatings, where the tensile and compressive
stress are destructed at the contact position, resulting in the spalling failure of the coating’s
surface. It can be also seen from Figure 9a that radial stress plays a dominant role in this
erosion process, mainly concentrated at the right angle of the particle boundary. Through
the comparison of the stress nephograms in Figure 10g–i, it can be seen that the stress at the
boundary of square CMAS particles in surface contact is greater than that at the center of
contact. As shown in Figure 9e, the stress at the contact corner is about 10% higher than that
at the middle position, which is due to the shear effect of the right-angle boundary on the
coating. When the particles rebound, it may cause secondary damage to the coating, as the
TC layer is more prone to produce longitudinal cracks. At high temperature, molten CMAS
particles will erode the YSZ coating through the longitudinal cracks, resulting in its failure.
The distribution of the maximum principal stress is shown in Figure 10a–c. During particle
erosion, the maximum principal stress on the surface of TC layer is mainly distributed at
and around the contact position, and the stress concentration is obvious. The direction of
the maximum principal stress at the contact position is the same as the stress direction,
forming an “extrusion” effect on the coating. Because the ceramic coating has a certain
shape, the contact position has a “pull” effect on the surrounding coating, The maximum
tensile stress is formed around it, causing it to deform, making the junction area prone to
cracks. The stress trend is the same at different speeds, that is, when the speed increases,
the greater the damage to the coating, and the greater the possibility of crack initiation at
the contact area.
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3.4. Effect of Erosion Angle on Coating

The turbine blade of the aeroengine is affected by erosion through foreign particles
and particles produced by the combustion chamber during service and the erosion angle
that changes with time. Therefore, this section will examine the effects of different erosion
angles on the failure modes of TC layer.

When the erosion angle changes, the stress state of path 1 changes with the erosion
angle α; as the velocity decreases, the stress next to the contact point begins to shift to the
other side, which makes the TC layer subject to a large strain, both in the X and Y direction.
The energy of CMAS particles in the Y direction decreases and the energy in the X direction
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increases. However, when the particles hit the TC layer, the particles rebound rapidly due
to the smaller velocity in the Y direction. The smaller the erosion angle, the less damage to
the coating. This is consistent with the study by Wang et al. [34] about the effects of particle
erosion on brittle and ductile materials. The research results show that the erosion angle of
particle erosion causing the maximum erosion damage to metal materials is 20◦~30◦, which
is mainly ploughing failure, while damage to ceramic materials occurs at 90◦, where the
main failure mode is crack generation and propagation, resulting in eventual fracture.

Maximum principal stress is the main factor for crack nucleation [27]. In order to
visualize the effect of particle erosion angle on the coating under different contact forms,
the stress distribution of the maximum principal stress of the coating “path 1” under
surface contact and line contact was extracted. All three contact forms caused cutting on
the coating, and the comparison between Figures 11a and 12a,b shows that the stress on the
right side of the erosion position is greater than the stress on the left side when the erosion
angle decreases.
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Figure 12a shows the maximum principal stress distribution curve for path 1 at face
contact, with the contact position as compressive stress, and the maximum compressive
stress approximately the same for α at 60◦ and 90◦. The maximum principal stress on the
right side of the erosion position at α = 45◦ and 60◦ is greater than the value of α = 90◦,
which is caused by the particles cutting the coating at 45◦ ≤ α < 90◦, so that the stress in
the coating is severely concentrated in the cut part, and it is very easy to produce cracks
and peeling on the surface of the coating. The residual stress is the smallest at α = 30◦, and
it is presumed that the component of velocity vy < vx, resulting in weaker cutting ability.
This part of the study lays the foundation for future investigations of the damage effect of
particle chamfering on the coating.
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3.5. Analysis of Erosion Failure

In the erosion of TBCs by CMAS particles, the damage caused to the coating is
controlled by many factors, such as different material properties, debris properties and
engine conditions (e.g., temperature), but the particle morphology, erosion speed and
erosion angle of the CMAS particles are among the dominant ones. When the morphology
is fixed, changing the erosion speed and erosion angle only changes the degree of damage
caused by particles to the coating. When the contact mode changes, the type of coating
damage will also change. Figure 13a shows the failure modes of TBCs under different
contact surfaces when CMAS particles erode coating. When a CMAS particle impacts the
TBCs with surface contact, the particle will “extrude” at the contact location, i.e., the contact
location is subjected to compressive stresses and tensile stresses on the periphery of the
extruded area but when the deformation degree exceeds its yield strength, the coating will
be prone to fracture and cracks will thus from at the boundary of the compressed area
and extend longitudinally along this junction. In point and line contact configurations, the
coating at the contact position may fall off during erosion, accompanied by the occurrence
of microcracks. The damage of the coating is largest at point contact, where the coating may
be broken and horizontal and longitudinal cracks may occur, which provides a channel
for the molten CMAS particles to corrode the coating. The YSZ sprayed with APS has a
layered structure. When molten CMAS is deposited on the surface of the TBCs, the molten
CMAS erode into the TBCs through the gaps between the layers, the defects generated
during the spraying process and the cracks generated after the CMAS erosion, as shown in
Figure 13c, the further hardening of the infiltrated molten CMAS leads to the growth of
cracks in the coating, which may cause the coating to peel off at several points.
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4. Conclusions

In the current study, the failure behavior of plasma sprayed yttria stabilized zirconia
under CMAS erosion has been calculated and studied by finite element simulation, and the
following conclusions can be obtained:

(1). The YSZ coating can effectively protect against erosion, and the stresses at the inter-
faces of the TC/BC and the BC/substrate decrease by 91.9% and 92.4%, respectively,
relative to the contact position. However, it also increases the stress level at the inter-
face slightly, which allows horizontal cracks to more easily penetrate and propagate
along the interface.

(2). During CMAS particle erosion, the coating exhibits the maximum residual stress at
normal (90◦) impact and decreases as the impact angle decreases. Through compara-
tive studies, all three contact forms cause ploughing damage to the coating with the
change of the erosion angle. When the erosion angle is 45◦ ≤ α < 90◦, the surface
contact causes more cutting damage to the coating than line and point contact, which
causes the surface of the coating to flake easily. Line contact erosion causes more
damage to the coating surface. Point contact erosion causes the most serious damage
to the erosion location.

(3). Calculated by the modified critical velocity equation, when the velocity in the
y-direction exceeds 0.034~0.39 m/s, it causes some damage to the coating, and the ve-
locities simulated in this paper are all larger than the critical velocity. After discussion,
it was found that the residual stress of the coating increases roughly linearly with the
increase in speed, while the radial stress increases the most and the residual radial
stress increases approximately 50 MPa for every 10 m/s increment in speed.
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