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Abstract: Wide band gap semiconductor 4H-SiC is currently widely used in the manufacture of high-
frequency and high-voltage power devices. The size of commercial 4H-SiC wafers is increasing, from
4 inches to 6 inches. Surface roughness, as one of the parameters reflecting the quality of epitaxial
wafers, is closely related to the performance of power devices. Most studies on the uniformity of
epitaxial layers did not focus on RMS; however, the uniformity of epitaxial surface roughness also
affects the device yield. In this paper, the root mean square roughness (RMS) and uniformity (σ) of
epitaxial wafers are investigated as a function of epitaxy conditions, including C/Si ratio, growth
temperature, and Si/H ratio. It was found that the best values of RMS and σ were obtained with C/Si
ratio = 1 in the experimental range. Growth temperature had opposite effects on RMS and σ, with
better RMS uniformity obtained at lower growth temperatures. An insignificant effect on RMS and σ

has been found with the Si/H ratio changes in the experimental range. We hope that our experiments
can play a certain role in promoting the improvement of the surface roughness of wafer-scale 4H-SiC
epitaxial layers.

Keywords: 4H-SiC; homogeneous epitaxy; LPCVD; uniformity

1. Introduction

As a third-generation wide-bandgap semiconductor, SiC has good application prospects
in high-temperature, high-voltage, and high-power devices [1–3]. SiC has more than 200 poly-
type structures, among which 4H-SiC is widely used in the development of microelectronic
devices due to its higher electron mobility and higher power conversion efficiency [3–6]. The
most widely used growth method for 4H-SiC epitaxial wafers is the chemical vapor deposition
(CVD) method [7–9]. Other methods of growing 4H-SiC epitaxial layer include sublimation [8]
and molecular beam epitaxy [10]. Among them, the growth temperature required by the sub-
limation method is higher, which increases the cost of epitaxial growth. Although molecular
beam epitaxy can obtain high-quality epitaxial layers at low temperatures, the growth rate is
relatively slow. Using the CVD method to grow 4H-SiC not only has good controllability, but
also the 4H-SiC epitaxial layer obtained by homoepitaxy has good crystallinity. High-quality
homogeneously grown epitaxial wafers without multi-type mixing can be obtained on off-axis
substrates by “Step-Controlled Epitaxy” mode using CVD [11–14]. Epitaxial growth at a
lower growth pressure can effectively suppress the homogenous products of the gas phase,
and the Cl-containing additive can selectively etch the regions with poor surface crystalline
quality. Therefore, epitaxial growth is often carried out in a Cl-containing environment or
under low pressure, so as to suppress the formation of Si droplets and obtain a higher quality
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of the epitaxial layer [15–18]. As the pressure decreases, the step bunching on the epitaxial
surface becomes more and more obvious, and the triangular defect density, which is fatal
to the device, is reduced. This is believed to be due to the increased surface mobility and
diffusion length of adatoms and the decreased epitaxial surface free energy [13,19–21]. When
the surface free energy is relatively high, the epitaxial surface tends to minimize the surface
free energy by forming defects or steps. The epitaxial surface under low pressure forms step
bunching, so the density of triangular defects is reduced. Step bunching has been reported
to increase leakage current in Schottky barrier diodes and reduce channel mobility or oxide
breakdown characteristics in metal-oxide-semiconductor field-effect transistors [21,22]. The
uniformity of the steps on the surface of the wafer-scale epitaxial layer directly affects the
yield of the fabricated devices. Therefore, it is very important to improve the uniformity of
the surface topography of 4H-SiC wafer-scale epitaxial layers.

With the continuous development of power devices, the large size of 4H-SiC epitaxial
wafers has become the main way for manufacturers to reduce costs, improve device produc-
tivity and improve device performance [23]. The performance of power devices depends
to a large extent on the quality of 4H-SiC epitaxial wafers [24,25], so the homoepitaxial
growth of 4H-SiC is critical for the fabrication of 4H-SiC power devices. However, the
process parameters of large-size 4H-SiC epitaxial wafers and small-size epitaxial wafers
are not exactly the same, which undoubtedly increases the technical difficulty of growing
large-size epitaxial wafers. At the same time, as the size of the epitaxial wafer increases, the
uniformity of the epitaxial surface is also more difficult to ensure. The uniformity of the
wafer-scale epitaxial surface is closely related to the uniformity of the subsequent fabricated
device performance. In order to improve the consistency of device performance in indus-
try, it is first necessary to ensure the uniformity of the surface of the epitaxial layer. The
surface topography of the 4H-SiC epitaxial layer is affected by several epitaxial parameters,
such as temperature, pressure, and C/Si ratio [26–28]. Therefore, by adjusting the epitaxy
parameters, wafer-scale 4H-SiC epitaxial layers with high uniformity can be obtained.

The uniformity of wafer-scale 4H-SiC epilayers has been investigated by many
groups [14,29–35]. However, in these studies, the study of uniformity does not focus
on the RMS of the surface. According to literature surveys, studies on the uniformity of
epitaxial surface roughness are rare. On the other hand, as mentioned above, the epitaxial
surface quality can affect the performance of the device, so the study of the root mean
square roughness (RMS) of 4H-SiC wafers is necessary. In order to study the standard
deviation (σ) of RMS, the epitaxial parameters with larger surface roughness were selected
for homoepitaxy in this experiment. In this way, the degree of distinction between epitaxial
wafers is large enough, which is more conducive to analysis. The sizes of the 4H-SiC
wafers in the experiments include 4 inches and 6 inches. On 4-inch wafers, we chose typical
five-point measurements to characterize wafer roughness and uniformity. The size of 6-inch
wafers is relatively large, which was characterized by radial measurement in many past
studies, as the susceptor kept rotating [14,29–31]. Therefore, the radius measurement is
adopted for 6-inch wafers in this paper. We chose to use σ to characterize the uniformity of
RMS due to the small value of surface roughness RMS.

In this paper, 4H-SiC epitaxial layers were grown on 4◦ off-angle substrates by low-
pressure chemical vapor deposition. Through single-variable experiments, the optimal
values of process parameters such as growth temperature, C/Si ratio, and Si/H ratio of
large-size 4H-SiC epitaxial wafers were determined, and a high-quality 4H-SiC epitaxial
layer with good uniformity was obtained.

2. Materials and Methods

In this experiment, 4H-SiC homoepitaxial experiments were carried out in the home-
made vertical hot-wall chemical vapor deposition (CVD) reactor. The substrates were
4-inch and 6-inch commercially available (purchased from SICC Co., Ltd. Shandong,
China), n-type 4H-SiC with Si-terminated (0001) faces, with an off-angle of 4◦ along the
(0001) crystal direction. In the epitaxy experiment, SiH4 (CAS No.7803-62-5) and C2H4
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(CAS No.74-85-1) were used as Si source and C source, and H2 (CAS No.1333-74-0) was
used as carrier gas and etching gas. H2 was used for in-situ etching before epitaxial growth.
Figure 1 shows the process of homoepitaxial experiments on 4H-SiC wafers. The typical
growth pressure is 40 Torr, the growth time is 30 min, and the temperature varies from
1500 ◦C to 1650 ◦C. By varying the C/Si ratio, temperature, and Si/H ratio respectively,
the effects of different parameters on the step size and uniformity of the 4H-SiC epitaxial
surface were investigated. Part of the 4H-SiC wafers obtained by epitaxial growth is shown
in Figure 2.
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The surface topography of the 4H-SiC epitaxial samples was analyzed using an optical
microscope. The surface roughness was studied by an atomic force microscope (AFM) in
tapping mode.

3. Results and Discussion

The main mode of 4H-SiC epitaxial growth is the “Step-Controlled Epitaxy” mode.
After the atoms are adsorbed on the surface, they can migrate to the steps for growth.
Therefore, the use of an off-axis substrate can make the 4H-SiC epitaxial layer well replicate
the crystal form of the substrate. Due to the minimization of surface energy, topographical
defects such as step bunching and triangles are prone to appear on the epitaxial surface
when epitaxial growth is performed using the “Step-Controlled Epitaxy” mode. The surface
atomic mesa of the 4◦ off-angle substrate is wider, and several atomic steps on the epitaxial
surface may gather together to form a giant step. These surface topographies and defects
increase the roughness and surface non-uniformity of the epitaxial layer.
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3.1. C/Si Ratio

C/Si ratio and growth temperature are two important parameters affecting the surface
steps of 4H-SiC epitaxial layers. Studies have found that the C/Si ratio affects the roughness
of the epitaxial surface, and its magnitude determines whether the epitaxial surface is in
a silicon-rich or carbon-rich atmosphere. The C/Si ratio affects not only doping [36] but
also epitaxial surface topography. In a carbon-rich environment with a large C/Si ratio, the
resulting epitaxial surface has more serious step bunching and increased roughness [37,38].
In a silicon-rich atmosphere, a gas-phase homogeneous reaction is likely to occur to generate
silicon droplets. In order to study the effect of C/Si ratio on the surface uniformity of
4H-SiC epitaxy, experiments were carried out under the conditions of Si/H = 0.08%, and
T = 1650 ◦C. The RMS measurement points for a single 4-inch wafer are shown in Figure 3.
By changing the source gas flow rate to change the C/Si ratio, the RMS and σ of the 4-inch
epitaxial wafer surface are obtained as shown in Figure 4. The formula for calculating data
uniformity σ is Equation (1):

σ =
√
σ2 =

√
∑n

i=1(xi − x)2

n − 1
(1)
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Figure 4. RMS and σ of 4H-SiC epitaxial wafers as a function of C/Si ratio, with C/Si ratios of 0.6,
1.0, 1.2, 1.5, and 2.0, respectively.

As shown in Figure 4, with the increase of C/Si ratio, σ gradually increased and
then decreased, and RMS first decreased and then increased. On the whole, with the
change of C/Si ratio in the experimental range, the change of RMS is relatively small; the
range is only 1.825 nm. In addition, the gradual increase of σ around C/Si = 1.5 indicates
that the uniformity in the whole epitaxial wafer is deteriorated. The AFM images of the
epitaxial wafers are shown in Figure 5. When the C/Si ratio is small, the overall steps
formed are relatively large, and most of the steps have a height of 45–50 nm. Although the
roughness is relatively large, the intra-wafer uniformity is good. When C/Si = 1.0, the RMS
obtained the minimum value in the experimental range, which proves that C/Si around 1.0
is the most suitable value for epitaxial growth. When the C/Si ratio increases to 1.5, the
surface roughness recovered to basically the same magnitude as when C/Si = 0.6. However,
the intra-wafer uniformity deteriorated severely, and the step height varies in the range
of 35–59 nm. When the C/Si ratio is increased to 2, although the surface uniformity is
improved, the epitaxial surface topography is no longer a regular step distribution. During
the epitaxial growth process, although the theoretical C/Si ratio is a stable value, it is
difficult for the C/Si ratio of the entire 4-inch sample to achieve a uniform distribution on
the surface of the epitaxial wafer. Therefore, the step size at different positions fluctuates
greatly. The optical microscope image of the epitaxial wafer is shown in Figure 6. The
epitaxial surface of 4H-SiC was observed at a magnification of 4200 times, and it was found
that, when the C/Si ratio was 0.6 and 1.5, the epitaxial surface was prone to huge steps,
while, when the C/Si ratio was 1.0, the epitaxial surface was relatively smooth. Combined
with the topography of the epitaxial surface and the variation trend of σ, the C/Si ratio of 1
was selected in the subsequent experiments.

3.2. Growth Temperature

The growth temperature is an important parameter in the epitaxy process. When the
temperature increases within a certain range, the step bunching phenomenon will become
more and more serious as the temperature increases [12,13]. The step bunching is more
serious at higher growth temperature because the migration speed of atoms in the 4H-SiC
mesa increases, and the difference between the growth rate of the steps and the mesas
becomes larger, thus leading to the enhancement of the step bunching phenomenon [13].
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In order to study the effect of growth temperature, experiments were carried out
under the condition of C/Si = 1, Si/H = 0.17%. Changing the temperature in the range of
1550 ◦C–1650 ◦C, the RMS change of the 4-inch wafers was obtained as shown in Figure 7.
The changes of RMS and σ with temperature basically show opposite trends. With the
increase of growth temperature, the RMS of the epitaxial surface shows a decreasing
trend. As the temperature increases, the step bunching on the epitaxial surface is gradually
obvious, and the size of the steps is greatly reduced. The height of the giant steps decreases
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from about 60 nm to about 40 nm. In addition to increasing the diffusion length of atoms,
increasing the temperature can also reduce the supersaturation degree of the adsorbed
phase, which promotes the epitaxial growth of 4H-SiC in step-controlled mode. Although
RMS and step size have decreased, σ has been increasing, which means that the intra-wafer
uniformity is gradually deteriorating. This may be related to the uneven temperature
gradient within the chip after the temperature rises. Local temperature changes can
have an effect on the actual C/Si ratio of the surface, which in turn affects the surface
topography [15]. Figure 8 is an optical microscope image of 4H-SiC epitaxial wafers as
a function of temperature. Figure 9 is a schematic cross-sectional view of the epitaxial
wafers along the [112(–)0] direction. It can be seen from the figures that the surface of
the epitaxial wafer is somewhat rough and uniform when the temperature is low. The
irregular undulations of the surface steps are large. After the temperature increased, step
bunching began to appear on the surface, accompanied by the appearance of giant steps.
The section curve becomes more regular, forming a smaller and regular distribution of
steps. In addition, due to the large Si/H ratio in the experiments, it is believed that the
RMS of the obtained surface is large at the growth temperature of less than 1600 ◦C, which
is caused by the insufficient etching effect of hydrogen.
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1620, and 1650 ◦C, respectively.
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Figure 9. Line analysis of the 4H-SiC epitaxial wafers along the [112(–)0] direction.

3.3. Si/H Ratio

It can be seen from Figure 7 that the epitaxial wafer obtained at 1550 ◦C has the best
uniformity within the experimental range. The experiment was carried out under the
condition of C/Si = 1, T = 1550 ◦C, and the flow ratio of source gas was changed to make
the Si/H ratio 0.08%, 0.10%, 0.12%, 0.13%, and 0.15%, respectively. The selection of RMS
measurement points for 6-inch wafers is shown in Figure 10, and the results are shown in
Table 1. The curves of RMS and σ of 6-inch 4H-SiC epitaxial wafers with Si/H ratio were
shown in Figure 11. The value of σ is calculated by Equation (1).
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Figure 10. Locations of surface roughness measurements for 6-inch wafers.

Table 1. RMS measurement results of 6-inch 4H-SiC wafers as a function of Si/H ratio.

Samples r0 (nm) r1 (nm) r2 (nm) r3 (nm) r4 (nm) r5 (nm) r6 (nm) σ

Si/H = 0.08% 3.359 3.241 3.022 3.394 3.168 2.949 2.510 0.304
Si/H = 0.10% 3.718 4.031 3.700 3.998 3.804 3.367 3.292 0.285
Si/H = 0.12% 3.76 3.37 3.702 3.535 3.54 3.41 3.02 0.246
Si/H = 0.13% 4.061 4.198 3.963 4.256 4.176 3.800 3.926 0.166
Si/H = 0.15% 3.272 2.84 3.29 3.036 3.138 3.04 2.944 0.165
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Figure 11. RMS and σ as a function of Si/H ratio, the Si/H ratio is 0.08%, 0.10%, 0.12%, 0.13%, and
0.15%, respectively.

With the increase of Si/H ratio, RMS and σ show increasing and decreasing trends,
respectively, but the changes are small. The effect of Si/H ratio on RMS is considered to be
related to the etching effect of H2. When the Si/H ratio is large, a silicon-rich atmosphere
is formed, and a gas-phase homogeneous reaction is likely to occur in the gas above the
substrate to generate silicon droplets to improve the surface roughness. When the Si/H
ratio is small, the etching effect of H2 is sufficient, and defects such as silicon droplets or
down falls on the surface can be removed in time to make the surface smooth, and at the
same time reduce the formation sites of defects in the epitaxy process. With the increase
of Si/H ratio, the proportion of H2 in the gas gradually decreases, so the etching effect
gradually weakens. At the same time, as the proportion of Si in the gas gradually increases,
it is easy to form silicon droplets or silicon clusters attached to the surface of the substrate,
which increases the RMS. In addition, in the surface etching process of 4H-SiC, since the
etching effect of H2 on C atoms is greater than that of Si atoms [13,19], when the Si/H ratio
increases, the binding ability of H2 and Si atoms is relatively weak, resulting in insufficient
etching effect. On the other hand, the growth rate tends to be saturated at a high Si/H ratio,
which is more likely to lead to rougher surface morphology and surface inhomogeneity [39].
Figure 12 is AFM images of the 4H-SiC epitaxial wafer as a function of Si/H ratio, where
the step height is mostly less than 10 nm when the Si/H ratio is 0.08%. With the gradual
increase of the Si/H ratio, the height of the steps mostly floated between 9 and 17 nm,
and the surface was observed to be smooth under an optical microscope. In addition, the
overall morphology of the epitaxial wafer does not change much. The uniformity is slightly
improved with increasing Si/H ratio.

In addition, through linear fitting of the data in Table 1, it is found that, with the
increase of the distance between the measurement point and the wafer center point, the
RMS value shows a downward trend. This trend in RMS within a single wafer surface
is believed to be epitaxy related. Inside the epitaxy equipment used in this experiment,
the Si/H ratio in the entire wafer is not absolutely uniform due to the influence of airflow
during epitaxy growth. The flow rate of SiH4 is smaller than that of H2, and it is more
susceptible to airflow. The Si/H ratio at the edge of the wafer is slightly smaller than that
at the center of the wafer, so the etching effect of H2 is more sufficient and the surface
roughness is lower. When the Si/H ratio increases, the flow rate of SiH4 increases, and
the non-uniformity of the Si/H ratio caused by the airflow is weakened, so the correlation
coefficient also decreases gradually.
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4. Conclusions

By changing the gas flow rate and growth temperature, the effects of C/Si ratio,
growth temperature, and Si/H ratio on the surface morphology and uniformity of wafer-
sized 4H-SiC epitaxial layers were investigated. Through optical microscope and AFM
observation of epitaxial wafers, it is found that the change of C/Si ratio has no obvious
effect on RMS within the experimental range, and the minimum value of RMS is obtained
at C/Si = 1. However, in a silicon-rich environment with a C/Si ratio of less than 1, better
uniformity of the epitaxial surface can be obtained. With the change of growth temperature,
RMS and σ show opposite trends. As the temperature increases, the RMS decreases, and
the step bunching phenomenon gradually appears, and the intra-wafer uniformity also
deteriorates to a certain extent. In contrast, the change of the process parameters Si/H ratio
has no obvious effect on the RMS and uniformity of the surface of the 4H-SiC wafer-scale
epitaxial layer.
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